Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Podocyte-specific RAP1GAP expression contributes to focal segmental glomerulosclerosis–associated glomerular injury
Uma Potla, … , Paul E. Klotman, Lewis Kaufman
Uma Potla, … , Paul E. Klotman, Lewis Kaufman
Published March 18, 2014
Citation Information: J Clin Invest. 2014;124(4):1757-1769. https://doi.org/10.1172/JCI67846.
View: Text | PDF
Research Article Article has an altmetric score of 21

Podocyte-specific RAP1GAP expression contributes to focal segmental glomerulosclerosis–associated glomerular injury

  • Text
  • PDF
Abstract

Injury to the specialized epithelial cells of the glomerulus (podocytes) underlies the pathogenesis of all forms of proteinuric kidney disease; however, the specific genetic changes that mediate podocyte dysfunction after injury are not fully understood. Here, we performed a large-scale insertional mutagenic screen of injury-resistant podocytes isolated from mice and found that increased expression of the gene Rap1gap, encoding a RAP1 activation inhibitor, ameliorated podocyte injury resistance. Furthermore, injured podocytes in murine models of disease and kidney biopsies from glomerulosclerosis patients exhibited increased RAP1GAP, resulting in diminished glomerular RAP1 activation. In mouse models, podocyte-specific inactivation of Rap1a and Rap1b induced massive glomerulosclerosis and premature death. Podocyte-specific Rap1a and Rap1b haploinsufficiency also resulted in severe podocyte damage, including features of podocyte detachment. Over-expression of RAP1GAP in cultured podocytes induced loss of activated β1 integrin, which was similarly observed in kidney biopsies from patients. Furthermore, preventing elevation of RAP1GAP levels in injured podocytes maintained β1 integrin–mediated adhesion and prevented cellular detachment. Taken together, our findings suggest that increased podocyte expression of RAP1GAP contributes directly to podocyte dysfunction by a mechanism that involves loss of RAP1-mediated activation of β1 integrin.

Authors

Uma Potla, Jie Ni, Justin Vadaparampil, Guozhe Yang, Jeremy S. Leventhal, Kirk N. Campbell, Peter Y. Chuang, Alexei Morozov, John C. He, Vivette D. D’Agati, Paul E. Klotman, Lewis Kaufman

×

Figure 8

RAP1GAP silencing prevents podocyte detachment after injury by preserving β1 integrin–mediated adhesion.

Options: View larger image (or click on image) Download as PowerPoint
RAP1GAP silencing prevents podocyte detachment after injury by preservin...
(A) Podocyte injury by exposure to PAN induced increased RAP1GAP protein expression. (B) A podocyte cell line that expresses an shRNA targeting Rap1gap expressed lower amounts of RAP1GAP protein and showed increased basal activation of RAP1 compared with podocytes carrying a scrambled shRNA. (C) RAP1GAP silencing dramatically increased podocyte adhesion to fibronectin. The increase in adhesive strength caused by loss of RAP1GAP was similar to that caused by the potent integrin activator Mn2+. *P < 0.0005, **P < 0.007. (D) RAP1GAP-silenced podocytes were protected from PAN-induced cellular detachment. This protection was lost, however, when cells were treated with the β1 integrin–blocking antibody Ha2/5. *P < 0.0001, **P < 0.0001, ***P < 0.0001, ANOVA. See Results for individual t tests.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 1 news outlets
Blogged by 1
Posted by 5 X users
42 readers on Mendeley
1 readers on CiteULike
See more details