Tendon formation and repair rely on specific combinations of transcription factors, growth factors, and mechanical parameters that regulate the production and spatial organization of type I collagen. Here, we investigated the function of the zinc finger transcription factor EGR1 in tendon formation, healing, and repair using rodent animal models and mesenchymal stem cells (MSCs). Adult tendons of
Marie-Justine Guerquin, Benjamin Charvet, Geoffroy Nourissat, Emmanuelle Havis, Olivier Ronsin, Marie-Ange Bonnin, Mathilde Ruggiu, Isabel Olivera-Martinez, Nicolas Robert, Yinhui Lu, Karl E. Kadler, Tristan Baumberger, Levon Doursounian, Francis Berenbaum, Delphine Duprez
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 863 | 188 |
103 | 66 | |
Figure | 497 | 18 |
Table | 61 | 0 |
Supplemental data | 62 | 10 |
Citation downloads | 57 | 0 |
Totals | 1,643 | 282 |
Total Views | 1,925 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.