NF-κB is constitutively activated in many cancer types and is a potential key mediator of tumor-associated inflammation, tumor growth, and metastasis. We investigated the role of cancer cell NF-κB activity in T cell–mediated antitumor responses. In tumors rendered immunogenic by model antigen expression or following administration of antitumor vaccines, we found that high NF-κB activity leads to tumor rejection and/or growth suppression in mice. Using a global RNA expression microarray, we demonstrated that NF-κB enhanced expression of several T cell chemokines, including
Emily L. Hopewell, Weipeng Zhao, William J. Fulp, Crystina C. Bronk, Alexis S. Lopez, Michael Massengill, Scott Antonia, Esteban Celis, Eric B. Haura, Steven A. Enkemann, Dung-Tsa Chen, Amer A. Beg
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 740 | 107 |
68 | 44 | |
Figure | 530 | 6 |
Table | 42 | 0 |
Supplemental data | 233 | 3 |
Citation downloads | 66 | 0 |
Totals | 1,679 | 160 |
Total Views | 1,839 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.