Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

From an ACE polymorphism to genome-wide searches for eQTL
Florent Soubrier
Florent Soubrier
Published January 2, 2013
Citation Information: J Clin Invest. 2013;123(1):111-112. https://doi.org/10.1172/JCI66618.
View: Text | PDF
Hindsight

From an ACE polymorphism to genome-wide searches for eQTL

  • Text
  • PDF
Abstract

Angiotensin I–converting enzyme (ACE, or DCP1) is a zinc metallopeptidase that converts angiotensin I into the vasoactive and aldosterone-stimulating peptide angiotensin II and cleaves bradykinin into inactive peptides. Plasma ACE measurement is widely used for the diagnosis of sarcoidosis. While enzyme concentrations are highly stable in an individual, there is a high level of interindividual variability. In 1990, we identified an insertion/deletion polymorphism in ACE that functions as a quantitative trait locus (QTL), accounting for half of the interindividual variability. Since then, technological advances have allowed for the elucidation of expression QTLs (eQTL). Such studies are allowing researchers to determine how underlying genetic predisposition contributes to human disease.

Authors

Florent Soubrier

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 348 30
PDF 64 13
Citation downloads 77 0
Totals 489 43
Total Views 532
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts