Type 2 diabetes (T2D) has emerged as a major threat to human health in most parts of the world. Therapeutic strategies aimed at improving pancreatic β cell function are predicted to prove beneficial for the treatment of T2D. In the present study, we demonstrate that drug-mediated, chronic, and selective activation of β cell Gq signaling greatly improve β cell function and glucose homeostasis in mice. These beneficial metabolic effects were accompanied by the enhanced expression of many genes critical for β cell function, maintenance, and differentiation. By employing a combination of in vivo and in vitro approaches, we identified a novel β cell pathway through which receptor-activated Gq leads to the sequential activation of ERK1/2 and IRS2 signaling, thus triggering a series of events that greatly improve β cell function. Importantly, we found that chronic stimulation of a designer Gq-coupled receptor selectively expressed in β cells prevented both streptozotocin-induced diabetes and the metabolic deficits associated with the consumption of a high-fat diet in mice. Since β cells are endowed with numerous receptors that mediate their cellular effects via activation of Gq-type G proteins, our findings provide a rational basis for the development of novel antidiabetic drugs targeting this class of receptors.
Shalini Jain, Inigo Ruiz de Azua, Huiyan Lu, Morris F. White, Jean-Marc Guettier, Jürgen Wess
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 813 | 169 |
80 | 50 | |
Figure | 375 | 11 |
Supplemental data | 46 | 6 |
Citation downloads | 72 | 0 |
Totals | 1,386 | 236 |
Total Views | 1,622 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.