RNA modifications are increasingly being recognized as critical players in cancer. While adenosine-to-inosine RNA editing is consistently deregulated in cancer, we are still unable to draw a straight line connecting transcript-specific editing and carcinogenesis. The findings by Choudhury et al. in this issue of the JCI bridge this gap by mechanistically implicating underediting of miR-376a* in promoting glioma invasiveness through redirection of its mRNA targets. Moreover, RAP2A and AMFR convincingly emerge as key regulators of glioma migration and invasion affected by deregulated microRNA editing. Being inherently malleable, epigenetic mechanisms may provide feasible targets for therapeutic benefit.
Dan Dominissini, Ninette Amariglio, Gideon Rechavi
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 371 | 21 |
57 | 0 | |
Figure | 40 | 1 |
Citation downloads | 46 | 0 |
Totals | 514 | 22 |
Total Views | 536 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.