Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Sox9 and programming of liver and pancreatic progenitors
Yoshiya Kawaguchi
Yoshiya Kawaguchi
Published May 1, 2013
Citation Information: J Clin Invest. 2013;123(5):1881-1886. https://doi.org/10.1172/JCI66022.
View: Text | PDF
Review Series

Sox9 and programming of liver and pancreatic progenitors

  • Text
  • PDF
Abstract

Recent advances in developmental biology have greatly expanded our understanding of progenitor cell programming and the fundamental roles that Sox9 plays in liver and pancreas organogenesis. In the last 2 years, several studies have dissected the behavior of the Sox9+ duct cells in adult organs, but conflicting results have left unanswered the long-standing question of whether physiologically functioning progenitors exist in adult liver and pancreas. On the other hand, increasing evidence suggests that duct cells function as progenitors in the tissue restoration process after injury, during which embryonic programs are sometimes reactivated. This article discusses the role of Sox9 in programming liver and pancreatic progenitors as well as controversies in the field.

Authors

Yoshiya Kawaguchi

×

Figure 2

Maintenance of pancreatic fate and gene regulation in the programming of pancreatic endocrine progenitors.

Options: View larger image (or click on image) Download as PowerPoint
Maintenance of pancreatic fate and gene regulation in the programming of...
A Fgf10/Fgfr2b/Sox9 feed-forward loop functions in the maintenance of pancreatic fate and expansion of early pancreatic precursors. Sox9 promotes the expression of Fgfr2b, which transduces signaling from Fgf10. Moreover, Fgf10 signaling promotes the expression of Fgfr2b and Sox9 in pancreatic progenitors. In the endocrine differentiation, a parallel regulatory circuitry exists, involving Notch, Hes1, Sox9, and Ngn3 (31–33).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts