Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Lung capillaries raise the hypoxia alarm
Jahar Bhattacharya
Jahar Bhattacharya
Published October 24, 2012
Citation Information: J Clin Invest. 2012;122(11):3845-3847. https://doi.org/10.1172/JCI65623.
View: Text | PDF
Commentary

Lung capillaries raise the hypoxia alarm

  • Text
  • PDF
Abstract

When ventilation is blocked, the lung can protect against the loss of blood oxygenation by activating localized arterial vasoconstriction, reducing blood flow to underventilated regions, and redirecting flow to better-ventilated alveoli. This phenomenon, hypoxic pulmonary vasoconstriction (HPV), preserves the overall efficiency of blood oxygenation, but the mechanism by which the hypoxic signal is transmitted to the smooth muscle that contracts the arterioles has remained largely a mystery. In this issue of the JCI, Wang et al. reveal that the endothelial lining of the hypoxic alveoli plays a key role in sensing hypoxia and transmitting the signal to initiate HPV.

Authors

Jahar Bhattacharya

×

Figure 1

Essential features of the capillary mechanism of HPV.

Options: View larger image (or click on image) Download as PowerPoint
Essential features of the capillary mechanism of HPV.
Mixed venous blood...
Mixed venous blood flows in through the pulmonary artery that branches to arterioles and then alveolar capillaries. The vascular smooth muscle investment ends at the level of the arterioles. The capillaries surround the air-filled alveolus. (A) In the normally ventilated alveolus, the hypoxic blood (blue) becomes oxygenated (red) and leaves the lung through the pulmonary veins. (B) Blockade of ventilation by airway disease causes alveolar hypoxia. The capillary endothelium is depolarized. The resulting increase of endothelial Ca2+ is communicated through endothelial gap junctions to smooth muscle surrounding upstream arterioles. Smooth muscle activation causes arteriolar constriction, restricting blood flow in the underventilated region.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts