Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Alzheimer’s disease and insulin resistance: translating basic science into clinical applications
Fernanda G. De Felice
Fernanda G. De Felice
Published February 1, 2013
Citation Information: J Clin Invest. 2013;123(2):531-539. https://doi.org/10.1172/JCI64595.
View: Text | PDF
Science in Medicine

Alzheimer’s disease and insulin resistance: translating basic science into clinical applications

  • Text
  • PDF
Abstract

Alzheimer’s disease (AD) and diabetes are currently considered among the top threats to human health worldwide. Intriguingly, a connection between these diseases has been established during the past decade, since insulin resistance, a hallmark of type 2 diabetes, also develops in Alzheimer brains. In this article, the molecular and cellular mechanisms underlying defective brain insulin signaling in AD are discussed, with emphasis on evidence that Alzheimer’s and diabetes share common inflammatory signaling pathways. I put forward here a hypothesis on how a cross-talk between peripheral tissues and the brain might influence the development of AD, and highlight important unanswered questions in the field. Furthermore, I discuss a rational basis for the use of antidiabetic agents as novel and potentially effective therapeutics in AD.

Authors

Fernanda G. De Felice

×

Figure 3

Boosting brain insulin signaling to combat AD.

Options: View larger image (or click on image) Download as PowerPoint
Boosting brain insulin signaling to combat AD.
(A) In healthy aging, IRs...
(A) In healthy aging, IRs are present at synapses, and proper insulin signaling favors synapse function and leads to memory formation. (B) In early AD, accumulation of AβOs stimulates TNF-α signaling, which activates the JNK pathway (11, 54) and, possibly, PKR and IKK pathways. Activation of these stress-sensitive kinases, which can also be triggered by ER stress in peripheral tissues (69), results in IRS-1pSer, decreasing downstream insulin signaling (11, 31, 54). This contributes to initial cognitive impairment in early AD. (C) At later AD stages, increased accumulation of AβOs and their binding to synapses lead to removal of IRs from the neuronal plasma membrane (14, 15, 47). Additionally, TNF-α/JNK activation ultimately blocks insulin actions (11), contributing to severe impairment in cognition and memory. (D) Stimulation of insulin and GLP-1Rs blocks early AβO-induced defects in insulin signaling. Insulin protects neurons by preventing AβO binding to neurons (15). In addition, activation of GLP-1Rs by exendin-4 or liraglutide and of IRs by insulin prevents JNK activation, allowing physiological tyrosine phosphorylation of IRS-1 and stimulating downstream insulin signaling. (E) At later AD stages, activation of GLP-1Rs prevents inhibitory IRS-1pSer, stimulating insulin-related downstream signaling pathways and ameliorating cognitive and memory impairment. Red arrows indicate inhibitory pathways and green arrows indicate stimulatory pathways of insulin signaling.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts