Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers
Ryan S. Lee, … , Gad Getz, Charles W.M. Roberts
Ryan S. Lee, … , Gad Getz, Charles W.M. Roberts
Published July 17, 2012
Citation Information: J Clin Invest. 2012;122(8):2983-2988. https://doi.org/10.1172/JCI64400.
View: Text | PDF
Brief Report Oncology Article has an altmetric score of 8

A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers

  • Text
  • PDF
Abstract

Cancer is principally considered a genetic disease, and numerous mutations are thought essential to drive its growth. However, the existence of genomically stable cancers and the emergence of mutations in genes that encode chromatin remodelers raise the possibility that perturbation of chromatin structure and epigenetic regulation are capable of driving cancer formation. Here we sequenced the exomes of 35 rhabdoid tumors, highly aggressive cancers of early childhood characterized by biallelic loss of SMARCB1, a subunit of the SWI/SNF chromatin remodeling complex. We identified an extremely low rate of mutation, with loss of SMARCB1 being essentially the sole recurrent event. Indeed, in 2 of the cancers there were no other identified mutations. Our results demonstrate that high mutation rates are dispensable for the genesis of cancers driven by mutation of a chromatin remodeling complex. Consequently, cancer can be a remarkably genetically simple disease.

Authors

Ryan S. Lee, Chip Stewart, Scott L. Carter, Lauren Ambrogio, Kristian Cibulskis, Carrie Sougnez, Michael S. Lawrence, Daniel Auclair, Jaume Mora, Todd R. Golub, Jaclyn A. Biegel, Gad Getz, Charles W.M. Roberts

×

Figure 2

Somatic mutations in RTs.

Options: View larger image (or click on image) Download as PowerPoint
Somatic mutations in RTs.
(A) Mutation multiplicity for each sample. Mul...
(A) Mutation multiplicity for each sample. Multiplicity is a measure of the average number of alternate alleles per tumor cell for each mutation. Heterozygous clonal mutations have a multiplicity near 1, while events below 1 are subclonal. Multiplicities close to 2 tend to be the result of mutations in loss-of-heterozygosity regions. Circles indicate the 9 SMARCB1 mutations. (B) Logarithmic plot of mutation rates in 5 other types of cancer compared with those in RTs. Blue circles represent recurrent the RT samples. For box-and-whisker plots, red horizontal bars indicate medians, boxes indicate 25th and 75th percentiles, lower whiskers indicate lowest datum within 1.5 times the interquartile range (1.5xIQR) of the lower quartile, upper whiskers indicate highest datum within 1.5xIQR of the upper quartile, and red dots represent outliers. CLL, chronic lymphocytic leukemia.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 2 X users
Referenced in 5 patents
On 1 Facebook pages
Referenced by 1 Bluesky users
237 readers on Mendeley
1 readers on CiteULike
See more details