Adaptation of tumor cells to the host is a major cause of cancer progression, failure of therapy, and ultimately death. Immune selection drives this adaptation in human cancer by enriching tumor cells with a cancer stem cell–like (CSC-like) phenotype that makes them resistant to CTL-mediated apoptosis; however, the mechanisms that mediate CSC maintenance and proliferation are largely unknown. Here, we report that CTL-mediated immune selection drives the evolution of tumor cells toward a CSC-like phenotype and that the CSC-like phenotype arises through the Akt signaling pathway via transcriptional induction of Tcl1a by Nanog. Furthermore, we found that hyperactivation of the Nanog/Tcl1a/Akt signaling axis was conserved across multiple types of human cancer. Inhibition of Nanog in a murine model of colon cancer rendered tumor cells susceptible to immune-mediated clearance and led to successful, long-term control of the disease. Our findings establish a firm link among immune selection, disease progression, and the development of a stem-like tumor phenotype in human cancer and implicate the Nanog/Tcl1a/Akt pathway as a central molecular target in this process.
Kyung Hee Noh, Bo Wook Kim, Kwon-Ho Song, Hanbyoul Cho, Young-Ho Lee, Jin Hee Kim, Joon-Yong Chung, Jae-Hoon Kim, Stephen M. Hewitt, Seung-Yong Seong, Chih-Ping Mao, T.-C. Wu, Tae Woo Kim
Usage data is cumulative from June 2024 through June 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,173 | 106 |
136 | 45 | |
Figure | 561 | 16 |
Table | 85 | 0 |
Supplemental data | 68 | 4 |
Citation downloads | 89 | 0 |
Totals | 2,112 | 171 |
Total Views | 2,283 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.