Atopic asthma is a chronic inflammatory disease of the lungs generally marked by excessive Th2 inflammation. The role of allergen-specific IgG in asthma is still controversial; however, a receptor of IgG–immune complexes (IgG-ICs), FcγRIII, has been shown to promote Th2 responses through an unknown mechanism. Herein, we demonstrate that allergen-specific IgG-ICs, formed upon reexposure to allergen, promoted Th2 responses in two different models of IC-mediated inflammation that were independent of a preformed T cell memory response. Development of Th2-type airway inflammation was shown to be both FcγRIII and TLR4 dependent, and T cells were necessary and sufficient for this process to occur, even in the absence of type 2 innate lymphoid cells. We sought to identify downstream targets of FcγRIII signaling that could contribute to this process and demonstrated that bone marrow–derived DCs, alveolar macrophages, and respiratory DCs significantly upregulated IL-33 when activated through FcγRIII and TLR4. Importantly, IC-induced Th2 inflammation was dependent on the ST2/IL-33 pathway. Our results suggest that allergen-specific IgG can enhance secondary responses by ligating FcγRIII on antigen-presenting cells to augment development of Th2-mediated responses in the lungs via an IL-33–dependent mechanism.
Melissa Y. Tjota, Jesse W. Williams, Tiffany Lu, Bryan S. Clay, Tiara Byrd, Cara L. Hrusch, Donna C. Decker, Claudia Alves de Araujo, Paul J. Bryce, Anne I. Sperling
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 633 | 73 |
55 | 31 | |
Figure | 263 | 6 |
Supplemental data | 49 | 3 |
Citation downloads | 68 | 0 |
Totals | 1,068 | 113 |
Total Views | 1,181 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.