The persistent immune activation that is typical of HIV-1 and SIV infection results in exhaustion and dysfunction of T and B cells; in T cells, this is marked by increased expression and signaling through the inhibitory receptor programmed death–1 (PD-1). Targeting this exhaustion pathway could result in improved antiviral immune responses, but there have been concerns that it would also lead to increased inflammation and immunopathology. In this issue of the JCI, Dyavar Shetty et al. demonstrate that blocking PD-1 actually reduced proinflammatory responses and improved immunity in the gut of SIV-infected rhesus macaques, suggesting that this might have therapeutic potential to prevent opportunistic infections in HIV-infected patients.
Jacob D. Estes
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 191 | 11 |
51 | 16 | |
Figure | 47 | 1 |
Citation downloads | 61 | 0 |
Totals | 350 | 28 |
Total Views | 378 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.