Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Unraveling human natural killer cell deficiency
Jordan S. Orange
Jordan S. Orange
Published February 22, 2012
Citation Information: J Clin Invest. 2012;122(3):798-801. https://doi.org/10.1172/JCI62620.
View: Text | PDF
Commentary Article has an altmetric score of 1

Unraveling human natural killer cell deficiency

  • Text
  • PDF
Abstract

NK cells are a component of the innate immune system identified in animals as serving an essential role in antiviral immunity. Establishing their role in human health has been challenging, with the most direct insight coming from the study of NK cell–deficient individuals. However, NK cell deficiencies are rare, and more research is needed. In this issue of the JCI, two independent groups of researchers have simultaneously identified the genetic cause of a human NK cell deficiency as mutation in the MCM4 gene, encoding minichromosome maintenance complex component 4. These reports suggest a critical role for the minichromosome maintenance helicase complex in NK cells and NK cell–mediated host defense.

Authors

Jordan S. Orange

×

Figure 1

Human genes known to affect NK cells in the context of naturally occurring disease.

Options: View larger image (or click on image) Download as PowerPoint
Human genes known to affect NK cells in the context of naturally occurri...
A human NK cell is represented schematically, with disease-associated genes listed in proximity to where the encoded proteins function within the cell. Genes that have an impact on other immune cells in addition to NK cells and thus cause broader immunodeficiency/hematological syndromes are shown in blue. The three genes known to cause either functional (CD16) or classical (GATA2 and now MCM4) NK cell deficiency are shown in red. CD16 mutation impacts a region of the well-defined NK cell activation receptor (shown on the cell surface) encoded by the gene (9), while GATA2 mutation affects the broadly expressed hematopoietic transcription factor (shown in the nucleus) that it encodes (10, 11). MCM4 mutations as defined by Gineau et al. (12) and Hughes et al. (13) presumably affect the function in NK cell DNA replication of the MCM2–7 complex of which MCM4 is a component. The impact and role in NK cells of the other human disease-associated mutated genes is reviewed elsewhere (2, 4, 5). In addition to having an impact on other immune cells, these affect NK cell development (IL2RG, JAK3), NK cell survival (ADA, BLM, FANCA–G), NK cell lytic function (ITGB2, ORAI1, LYST, AP3B1, MAPBPIP, RAB27A, UNC13D, STXBP2, STX11, PRF1, CTSC, WASP, MYH9), or NK cell responsiveness (TAP1, TAP2, IL12RB1, NEMO, CASP8).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 1 X users
99 readers on Mendeley
See more details