Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Conditional Gata2 inactivation results in HSC loss and lymphatic mispatterning
Kim-Chew Lim, … , Masayuki Yamamoto, James Douglas Engel
Kim-Chew Lim, … , Masayuki Yamamoto, James Douglas Engel
Published September 10, 2012
Citation Information: J Clin Invest. 2012;122(10):3705-3717. https://doi.org/10.1172/JCI61619.
View: Text | PDF
Research Article

Conditional Gata2 inactivation results in HSC loss and lymphatic mispatterning

  • Text
  • PDF
Abstract

The transcription factor GATA-2 plays vital roles in quite diverse developmental programs, including hematopoietic stem cell (HSC) survival and proliferation. We previously identified a vascular endothelial (VE) enhancer that regulates GATA-2 activity in pan-endothelial cells. To more thoroughly define the in vivo regulatory properties of this enhancer, we generated a tamoxifen-inducible Cre transgenic mouse line using the Gata2 VE enhancer (Gata2 VECre) and utilized it to temporally direct tissue-specific conditional loss of Gata2. Here, we report that Gata2 VECre–mediated loss of GATA-2 led to anemia, hemorrhage, and eventual death in edematous embryos. We further determined that the etiology of anemia in conditional Gata2 mutant embryos involved HSC loss in the fetal liver, as demonstrated by in vitro colony-forming and immunophenotypic as well as in vivo long-term competitive repopulation experiments. We further documented that the edema and hemorrhage in conditional Gata2 mutant embryos were due to defective lymphatic development. Thus, we unexpectedly discovered that in addition to its contribution to endothelial cell development, the VE enhancer also regulates GATA-2 expression in definitive fetal liver and adult BM HSCs, and that GATA-2 function is required for proper lymphatic vascular development during embryogenesis.

Authors

Kim-Chew Lim, Tomonori Hosoya, William Brandt, Chia-Jui Ku, Sakie Hosoya-Ohmura, Sally A. Camper, Masayuki Yamamoto, James Douglas Engel

×

Figure 6

Long-term hematopoietic reconstitution of Tx-treated E14.5 TgVE:Gata2–/fl FL cells is severely compromised.

Options: View larger image (or click on image) Download as PowerPoint
Long-term hematopoietic reconstitution of Tx-treated E14.5 TgVE:Gata2–/f...
(A) Strategy for competitive reconstitution of lethally irradiated CD45.1 adult mice. 5 × 105 E14.5 total FL cells from control (Gata2+/fl [n = 1],TgVE:Gata2+/+ [n = 3], or TgVE:Gata2–/fl [n = 2]) Tx-treated CD45.2 embryos were transplanted together with 5 × 105 CD45.1 adult BM cells. FL cells from each embryo were transplanted into 5 recipients. (B) Donor chimerism in the peripheral blood was assessed by flow cytometry using anti-CD45.1–PECy7 and anti-CD45.2–APC antibodies from 4 to 16 weeks after transplantation. CD45.2 donor cell contribution (mean ± SD) from 2 independent experiments is shown. Unlike the robust peripheral blood reconstitution by control FL cells in transplant recipients, TgVE:Gata2–/fl FL cells barely reconstituted their irradiated hosts. Transplant recipients: Gata2+/fl (n = 5), TgVE:Gata2+/+ (n = 15), TgVE:Gata2–/fl (n = 10). (C and D) Sixteen weeks after transplantation, BM cells were harvested from each mouse (2 tibias plus 2 femurs), and the ratios of CD45.1 to CD45.2 LSKS cells were determined by flow cytometry. Representative contour plots of irradiated CD45.1 recipients that received Gata2+/fl (+/fl) or Tg:Gata2–/fl (Tg:–/fl) FL cells are shown (C). Note the conspicuous absence of CD45.2 FL donor-derived LSKS cells in the latter representative recipient. The average ratio of CD45.1 to CD45.2 LSKS cells in transplant recipients that received Gata2+/fl (+/fl; n = 5), Tg:Gata2+/+ (Tg:+/+; n = 5), or Tg:Gata2–/fl (Tg:–/fl; n = 10) is shown (D). Note that in the latter group of recipients, the majority of LSKS cells are not derived from FL. Data represent mean ± SD.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts