A potent and selective inhibitor of the osteoclastic V-H+-ATPase, (2Z,4E)-5-(5,6-dichloro-2-indolyl)-2-methoxy-N-(1,2,2,6,6-pentamethylpiperidin-4-yl) -2,4-pentadienamide (SB 242784), was evaluated in two animal models of bone resorption. SB 242784 completely prevented retinoid-induced hypercalcemia in thyroparathyroidectomized (TPTX) rats when administered orally at 10 mg/kg. SB 242784 was highly efficacious in the prevention of ovariectomy-induced bone loss in the rat when administered orally for 6 months at 10 mg/kg/d and was partially effective at 5 mg/kg/d. Its activity was demonstrated by measurement of bone mineral density (BMD), biochemical markers of bone resorption, and histomorphometry. SB 242784 was at least as effective in preventing bone loss as an optimal dose of estrogen. There were no adverse effects of compound administration and no effects on kidney function or urinary acidity. Selectivity of the inhibitor was further studied using an in situ cytochemical assay for bafilomycin-sensitive V-H+-ATPase using sections of osteoclastoma and numerous other tissues. SB 242784 inhibited the osteoclast enzyme at 1,000-fold lower concentrations than enzymes in any of the other tissues evaluated. SB 242784 demonstrates the utility of selective inhibition of the osteoclast V-H+-ATPase as a novel approach to the prevention of bone loss in humans.
Luciano Visentin, Robert A. Dodds, Maurizio Valente, Paola Misiano, Jeremy N. Bradbeer, Sergio Oneta, Xiaoguang Liang, Maxine Gowen, Carlo Farina
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 533 | 43 |
62 | 22 | |
Figure | 410 | 34 |
Citation downloads | 65 | 0 |
Totals | 1,070 | 99 |
Total Views | 1,169 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.