Retinoblastoma is a pediatric cancer that has served as a paradigm for tumor suppressor gene function. Retinoblastoma is initiated by RB gene mutations, but the subsequent cooperating mutational events leading to tumorigenesis are poorly characterized. We investigated what these additional genomic alterations might be using human retinoblastoma samples and mouse models. Array-based comparative genomic hybridization studies revealed deletions in the CDKN2A locus that include ARF and P16INK4A, both of which encode tumor suppressor proteins, in both human and mouse retinoblastoma. Through mouse genetic analyses, we found that Arf was the critical tumor suppressor gene in the deleted region. In mice, inactivation of one allele of Arf cooperated with Rb and p107 loss to rapidly accelerate retinoblastoma, with frequent loss of heterozygosity (LOH) at the Arf locus. Arf has been reported to exhibit p53-independent tumor suppressor roles in other systems; however, our results showed no additive effect of p53 and Arf coinactivation in promoting retinoblastoma. Moreover, p53 inactivation completely eliminated any selection for Arf LOH. Thus, our data reveal important insights into the p53 pathway in retinoblastoma and show that Arf is a key collaborator with Rb in retinoblastoma suppression.
Karina Conkrite, Maggie Sundby, David Mu, Shizuo Mukai, David MacPherson
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 370 | 27 |
63 | 17 | |
Figure | 167 | 3 |
Supplemental data | 56 | 1 |
Citation downloads | 63 | 0 |
Totals | 719 | 48 |
Total Views | 767 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.