Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Mouse and computational models link Mlc2v dephosphorylation to altered myosin kinetics in early cardiac disease
Farah Sheikh, … , Andrew D. McCulloch, Ju Chen
Farah Sheikh, … , Andrew D. McCulloch, Ju Chen
Published March 19, 2012
Citation Information: J Clin Invest. 2012;122(4):1209-1221. https://doi.org/10.1172/JCI61134.
View: Text | PDF
Research Article Cardiology

Mouse and computational models link Mlc2v dephosphorylation to altered myosin kinetics in early cardiac disease

  • Text
  • PDF
Abstract

Actin-myosin interactions provide the driving force underlying each heartbeat. The current view is that actin-bound regulatory proteins play a dominant role in the activation of calcium-dependent cardiac muscle contraction. In contrast, the relevance and nature of regulation by myosin regulatory proteins (for example, myosin light chain-2 [MLC2]) in cardiac muscle remain poorly understood. By integrating gene-targeted mouse and computational models, we have identified an indispensable role for ventricular Mlc2 (Mlc2v) phosphorylation in regulating cardiac muscle contraction. Cardiac myosin cycling kinetics, which directly control actin-myosin interactions, were directly affected, but surprisingly, Mlc2v phosphorylation also fed back to cooperatively influence calcium-dependent activation of the thin filament. Loss of these mechanisms produced early defects in the rate of cardiac muscle twitch relaxation and ventricular torsion. Strikingly, these defects preceded the left ventricular dysfunction of heart disease and failure in a mouse model with nonphosphorylatable Mlc2v. Thus, there is a direct and early role for Mlc2 phosphorylation in regulating actin-myosin interactions in striated muscle contraction, and dephosphorylation of Mlc2 or loss of these mechanisms can play a critical role in heart failure.

Authors

Farah Sheikh, Kunfu Ouyang, Stuart G. Campbell, Robert C. Lyon, Joyce Chuang, Dan Fitzsimons, Jared Tangney, Carlos G. Hidalgo, Charles S. Chung, Hongqiang Cheng, Nancy D. Dalton, Yusu Gu, Hideko Kasahara, Majid Ghassemian, Jeffrey H. Omens, Kirk L. Peterson, Henk L. Granzier, Richard L. Moss, Andrew D. McCulloch, Ju Chen

×

Figure 5

DM mutant mice are sensitized to pressure overload following TAC.

Options: View larger image (or click on image) Download as PowerPoint
DM mutant mice are sensitized to pressure overload following TAC.
(A) LV...
(A) LV to BW ratios as well as in vivo echocardiographic assessment of cardiac size and function in 6-week-old WT and DM mutant mice, before (pre) and following (post) sham and TAC operation for 1 week. **P < 0.01 versus WT-sham; ##P < 0.01 versus DM-sham, ¶¶P < 0.01 versus WT-TAC. Transstenotic pressure gradients within WT (82.35 ± 10.8 mmHg; n = 7) and DM (78.05 ± 9.7 mmHg; n = 7) hearts were not significantly different. No significant changes in heart rates were observed between mice between groups. (B) Cardiomyocyte length and widths are plotted from WT (black line; n = 3) versus DM (red line; n = 3) mice before and after sham and TAC operation for 1 week. Red arrow highlights shift toward higher cardiomyocyte length in DM-TAC. Data are expressed as AU. Left shift representative of increased cell width was only observed in cardiomyocytes isolated from WT-TAC. **P < 0.01 (C) ANF, β-MHC, α-MHC, sk-Actin, c-Actin, and PLB RNA expression in LV from mice before and after sham and TAC operation for 1 week (n = 3 in each group) are normalized to Gapdh RNA expression and expressed as a percentage (%) of WT-sham controls, which are set to 100%. *P < 0.05; **P < 0.01; ***P < 0.001. Data are expressed as mean values ± SEM.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts