Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Combining Cep290 and Mkks ciliopathy alleles in mice rescues sensory defects and restores ciliogenesis
Rivka A. Rachel, … , Matthew W. Kelley, Anand Swaroop
Rivka A. Rachel, … , Matthew W. Kelley, Anand Swaroop
Published March 26, 2012
Citation Information: J Clin Invest. 2012;122(4):1233-1245. https://doi.org/10.1172/JCI60981.
View: Text | PDF | Corrigendum
Research Article

Combining Cep290 and Mkks ciliopathy alleles in mice rescues sensory defects and restores ciliogenesis

  • Text
  • PDF
Abstract

Cilia are highly specialized microtubule-based organelles that have pivotal roles in numerous biological processes, including transducing sensory signals. Defects in cilia biogenesis and transport cause pleiotropic human ciliopathies. Mutations in over 30 different genes can lead to cilia defects, and complex interactions exist among ciliopathy-associated proteins. Mutations of the centrosomal protein 290 kDa (CEP290) lead to distinct clinical manifestations, including Leber congenital amaurosis (LCA), a hereditary cause of blindness due to photoreceptor degeneration. Mice homozygous for a mutant Cep290 allele (Cep290rd16 mice) exhibit LCA-like early-onset retinal degeneration that is caused by an in-frame deletion in the CEP290 protein. Here, we show that the domain deleted in the protein encoded by the Cep290rd16 allele directly interacts with another ciliopathy protein, MKKS. MKKS mutations identified in patients with the ciliopathy Bardet-Biedl syndrome disrupted this interaction. In zebrafish embryos, combined subminimal knockdown of mkks and cep290 produced sensory defects in the eye and inner ear. Intriguingly, combinations of Cep290rd16 and Mkksko alleles in mice led to improved ciliogenesis and sensory functions compared with those of either mutant alone. We propose that altered association of CEP290 and MKKS affects the integrity of multiprotein complexes at the cilia transition zone and basal body. Amelioration of the sensory phenotypes caused by specific mutations in one protein by removal of an interacting domain/protein suggests a possible novel approach for treating human ciliopathies.

Authors

Rivka A. Rachel, Helen L. May-Simera, Shobi Veleri, Norimoto Gotoh, Byung Yoon Choi, Carlos Murga-Zamalloa, Jeremy C. McIntyre, Jonah Marek, Irma Lopez, Alice N. Hackett, Matthew Brooks, Anneke I. den Hollander, Philip L. Beales, Tiansen Li, Samuel G. Jacobson, Raman Sood, Jeffrey R. Martens, Paul Liu, Thomas B. Friedman, Hemant Khanna, Robert K. Koenekoop, Matthew W. Kelley, Anand Swaroop

×

Figure 7

CEP290 and MKKS are expressed in adjacent domains in ciliated sensory cells.

Options: View larger image (or click on image) Download as PowerPoint
CEP290 and MKKS are expressed in adjacent domains in ciliated sensory ce...
(A) CEP290 (red) and rootletin (green) in WT photoreceptors. CEP290 localizes to the connecting cilium, distal to ciliary rootlet. MKKS (red) and rootletin (green); MKKS caps the rootlet in the basal body (BB) region. Original magnification, ×180. (B) CEP290 (green), MKKS (red), and rootletin (rootlet; blue) in photoreceptors. CEP290 and MKKS are expressed in adjacent, nonoverlapping domains corresponding to connecting cilium and basal body. Arrow shows proximal-distal orientation of cilium. Original magnification, ×480. (C) CEP290 (red) continues to be expressed in Cep290rd16/rd16, Mkksko/ko, and in double homozygotes, albeit irregularly and disorderly. Original magnification, ×180. (D) Expression of CEP290 (green) and γ-tubulin (red) in P0 WT cochlea. In hair cells, CEP290 is detected in punctate spots at base of kinocilium (white arrows); γ-tubulin (red) localizes to the basal body. CEP290 is expressed broadly in supporting cells surrounding hair cells. Diagram shows enlargement of the hair cell (purple circle). IHC, inner hair cells; OHC, outer hair cells. Original magnification, ×176.4. (E) CEP290 (green) and γ-tubulin (red) expression in olfactory sensory neurons on the surface of the olfactory epithelium. Olfactory sensory neurons have multiple basal bodies and cilia per cell (schematic on right), with arrow indicating proximal-distal direction. Original magnification, ×60. (F) A possible model depicting interaction of CEP290-DSD in proximal cilia, with MKKS in adjacent basal bodies. The long green cylinder indicates CEP290, with the hook indicating the MKKS-interacting DSD domain. The short green cylinder represents CEP290-ΔDSD, and the red oval represents MKKS. The yellow pentagon and blue diamond represent predicted CEP290- and MKKS-interacting proteins, respectively. Asterisks indicate that the effect of losing both alleles is tissue specific. In the cochlea and olfactory epithelium, improvement is noted with loss of both alleles. In photoreceptors, such improvement does not occur.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts