Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Reversal of autoimmune diabetes by restoration of antigen-specific tolerance using genetically modified Lactococcus lactis in mice
Tatiana Takiishi, … , Conny Gysemans, Chantal Mathieu
Tatiana Takiishi, … , Conny Gysemans, Chantal Mathieu
Published April 9, 2012
Citation Information: J Clin Invest. 2012;122(5):1717-1725. https://doi.org/10.1172/JCI60530.
View: Text | PDF
Research Article Autoimmunity Article has an altmetric score of 35

Reversal of autoimmune diabetes by restoration of antigen-specific tolerance using genetically modified Lactococcus lactis in mice

  • Text
  • PDF
Abstract

Current interventions for arresting autoimmune diabetes have yet to strike the balance between sufficient efficacy, minimal side effects, and lack of generalized immunosuppression. Introduction of antigen via the gut represents an appealing method for induction of antigen-specific tolerance. Here, we developed a strategy for tolerance restoration using mucosal delivery in mice of biologically contained Lactococcus lactis genetically modified to secrete the whole proinsulin autoantigen along with the immunomodulatory cytokine IL-10. We show that combination therapy with low-dose systemic anti-CD3 stably reverted diabetes in NOD mice and increased frequencies of local Tregs, which not only accumulated in the pancreatic islets, but also suppressed immune response in an autoantigen-specific way. Cured mice remained responsive to disease-unrelated antigens, which argues against excessive immunosuppression. Application of this therapeutic tool achieved gut mucosal delivery of a diabetes-relevant autoantigen and a biologically active immunomodulatory cytokine, IL-10, and, when combined with a low dose of systemic anti-CD3, was well tolerated and induced autoantigen-specific long-term tolerance, allowing reversal of established autoimmune diabetes. Therefore, we believe this method could be an effective treatment strategy for type 1 diabetes in humans.

Authors

Tatiana Takiishi, Hannelie Korf, Tom L. Van Belle, Sofie Robert, Fabio A. Grieco, Silvia Caluwaerts, Letizia Galleri, Isabella Spagnuolo, Lothar Steidler, Karolien Van Huynegem, Pieter Demetter, Clive Wasserfall, Mark A. Atkinson, Francesco Dotta, Pieter Rottiers, Conny Gysemans, Chantal Mathieu

×

Figure 4

Local accumulation and autoAg-specific suppression by Tregs upon CT.

Options: View larger image (or click on image) Download as PowerPoint
Local accumulation and autoAg-specific suppression by Tregs upon CT.
(A)...
(A) Real-time PCR analysis of indicated mRNA isolated from CD4+CD25+ T cells sorted from spleen and PLN of long-standing normoglycemic, diabetic, and CT-cured NOD mice. (B) Number of Foxp3-expressing cells in or around the pancreatic islets as determined by manual counting of Foxp3+ cells on immunostained cryosections as shown in Supplemental Figure 9. (C) Representative microphotographs of immunostaining for Ki-67 and Foxp3 and nuclear staining using DAPI on paraffin sections of the pancreas of CT-cured NOD mice. White arrows indicate Ki-67+Foxp3+ double-positive cells, indicating proliferating Foxp3+ Tregs. Original magnification, ×63; detail, ×252. Statistical significance was calculated using Mann-Whitney U test (*P < 0.05, **P < 0.01, ***P < 0.001).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Blogged by 1
Referenced in 1 policy sources
Posted by 10 X users
Referenced in 18 patents
On 1 Facebook pages
Highlighted by 1 platforms
211 readers on Mendeley
See more details