Rodent models of obesity induced by consuming high-fat diet (HFD) are characterized by inflammation both in peripheral tissues and in hypothalamic areas critical for energy homeostasis. Here we report that unlike inflammation in peripheral tissues, which develops as a consequence of obesity, hypothalamic inflammatory signaling was evident in both rats and mice within 1 to 3 days of HFD onset, prior to substantial weight gain. Furthermore, both reactive gliosis and markers suggestive of neuron injury were evident in the hypothalamic arcuate nucleus of rats and mice within the first week of HFD feeding. Although these responses temporarily subsided, suggesting that neuroprotective mechanisms may initially limit the damage, with continued HFD feeding, inflammation and gliosis returned permanently to the mediobasal hypothalamus. Consistent with these data in rodents, we found evidence of increased gliosis in the mediobasal hypothalamus of obese humans, as assessed by MRI. These findings collectively suggest that, in both humans and rodent models, obesity is associated with neuronal injury in a brain area crucial for body weight control.
Joshua P. Thaler, Chun-Xia Yi, Ellen A. Schur, Stephan J. Guyenet, Bang H. Hwang, Marcelo O. Dietrich, Xiaolin Zhao, David A. Sarruf, Vitaly Izgur, Kenneth R. Maravilla, Hong T. Nguyen, Jonathan D. Fischer, Miles E. Matsen, Brent E. Wisse, Gregory J. Morton, Tamas L. Horvath, Denis G. Baskin, Matthias H. Tschöp, Michael W. Schwartz
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 4,330 | 1,352 |
459 | 376 | |
Figure | 1,112 | 36 |
Supplemental data | 84 | 19 |
Citation downloads | 122 | 0 |
Totals | 6,107 | 1,783 |
Total Views | 7,890 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.