The enteric nervous system (ENS) controls the gastrointestinal system. Enteric glia have long been regarded as the essential “glue” of the ENS. Now, however, two independent reports in this issue of the JCI provide compelling evidence that mouse enteric glia can also be neuronal precursors. These reports show that enteric glia give rise to neurons in vitro and that neurogenesis can be experimentally induced to occur in vivo in the adult mouse ENS. Unfortunately, glia do not constitutively replace neurons, and neurogenesis is not easily provoked. Although these new observations make it clear that clinical trials using glia to replace enteric neurons are more than premature, they are enticing for future research.
Michael D. Gershon
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 253 | 32 |
88 | 19 | |
Figure | 66 | 3 |
Citation downloads | 57 | 0 |
Totals | 464 | 54 |
Total Views | 518 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.