Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Of SMN in mice and men: a therapeutic opportunity
Kathryn J. Swoboda
Kathryn J. Swoboda
Published July 25, 2011
Citation Information: J Clin Invest. 2011;121(8):2978-2981. https://doi.org/10.1172/JCI58752.
View: Text | PDF
Commentary

Of SMN in mice and men: a therapeutic opportunity

  • Text
  • PDF
Abstract

Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disease that predominantly affects motor neurons, resulting in progressive muscular atrophy and weakness. SMA arises due to insufficient survival motor neuron (SMN) protein levels as a result of homozygous disruption of the SMN1 gene. SMN upregulation is a promising and potent treatment strategy for this currently incurable condition. In this issue of the JCI, two independent research groups report novel observations in mouse models of severe SMA that provide hope that this approach will afford meaningful benefit to individuals with SMA.

Authors

Kathryn J. Swoboda

×

Figure 2

Gene organization and expression in the region of human chromosome 5q containing the SMN1 and SMN2 genes.

Options: View larger image (or click on image) Download as PowerPoint
Gene organization and expression in the region of human chromosome 5q co...
SMN is one of four duplicated genes within a duplicated inverted 500-bp region on chromosome 5q. The two copies of SMN differ by a few base pairs with only two of them being in the exonic sequence. Functionally critical is the single nucleotide difference in exon 7 at position 840. Although translationally silent, the C→T transition in SMN2 affects splicing. SMN is one of four genes in this inverted duplicated region; the others have not been clearly demonstrated to contribute to the pathogenesis of SMA. H4F5, protein 4F5; NAIP, NLR family, apoptosis inhibitory protein.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts