Chronic lung allograft rejection, known as obliterative bronchiolitis (OB), is the leading cause of death in lung transplant patients. Although OB pathogenesis is not fully understood, in this issue of the JCI, Jiang and colleagues report that tissue hypoxia resulting in dysfunctional airway microvasculature precedes the airway fibrosis characteristic of OB. In addition, a relative deficiency of allograft endothelial cell–derived HIF-1α contributes to this process. Data showing that overexpressing HIF-1α restores the microvascular airway normoxia and prevents airway fibrosis highlight a novel role for vascular biology in OB pathogenesis.
David S. Wilkes
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 234 | 18 |
64 | 24 | |
Citation downloads | 67 | 0 |
Totals | 365 | 42 |
Total Views | 407 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.