Epoxyeicosatrienoic acids (EETs) are small molecules produced by cytochrome P450 epoxygenases. They are lipid mediators that act as autocrine or paracrine factors to regulate inflammation and vascular tone. As a result, drugs that raise EET levels are in clinical trials for the treatment of hypertension and many other diseases. However, despite their pleiotropic effects on cells, little is known about the role of these epoxyeicosanoids in cancer. Here, using genetic and pharmacological manipulation of endogenous EET levels, we demonstrate that EETs are critical for primary tumor growth and metastasis in a variety of mouse models of cancer. Remarkably, we found that EETs stimulated extensive multiorgan metastasis and escape from tumor dormancy in several tumor models. This systemic metastasis was not caused by excessive primary tumor growth but depended on endothelium-derived EETs at the site of metastasis. Administration of synthetic EETs recapitulated these results, while EET antagonists suppressed tumor growth and metastasis, demonstrating in vivo that pharmacological modulation of EETs can affect cancer growth. Furthermore, inhibitors of soluble epoxide hydrolase (sEH), the enzyme that metabolizes EETs, elevated endogenous EET levels and promoted primary tumor growth and metastasis. Thus, our data indicate a central role for EETs in tumorigenesis, offering a mechanistic link between lipid signaling and cancer and emphasizing the critical importance of considering possible effects of EET-modulating drugs on cancer.
Dipak Panigrahy, Matthew L. Edin, Craig R. Lee, Sui Huang, Diane R. Bielenberg, Catherine E. Butterfield, Carmen M. Barnés, Akiko Mammoto, Tadanori Mammoto, Ayala Luria, Ofra Benny, Deviney M. Chaponis, Andrew C. Dudley, Emily R. Greene, Jo-Anne Vergilio, Giorgio Pietramaggiori, Sandra S. Scherer-Pietramaggiori, Sarah M. Short, Meetu Seth, Fred B. Lih, Kenneth B. Tomer, Jun Yang, Reto A. Schwendener, Bruce D. Hammock, John R. Falck, Vijaya L. Manthati, Donald E. Ingber, Arja Kaipainen, Patricia A. D’Amore, Mark W. Kieran, Darryl C. Zeldin
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,023 | 114 |
88 | 49 | |
Figure | 226 | 14 |
Table | 83 | 0 |
Supplemental data | 48 | 4 |
Citation downloads | 55 | 0 |
Totals | 1,523 | 181 |
Total Views | 1,704 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.