The interaction of the T-cell receptor with the major histocomatibility complex (MHC)–peptide complex is central to T-cell activation. Variation in the nature of the peptide bound within the groove of the MHC molecule may result in an altered T-cell response. Because some naturally processed peptides bound within the groove of the class II MHC molecule are derived from the MHC molecules themselves, we studied the inhibitory effects of synthetic class II MHC peptides on alloimmune responses in vitro. Three peptides derived from a highly conserved region of the class II MHC α chains inhibited the rat mixed lymphocyte response (MLR) in a dose-dependent manner, with the human HLA-DQA1 peptide also inhibiting the human and mouse MLR. No effect was seen on mitogen-induced T-cell proliferation. HLA-DQA1 inhibited cytolytic T lymphocyte (CTL) generation in a dose–response fashion, with no reduction in preformed CTL killing, suggesting that the inhibitory effect is targeted at CD4+ T-cell function. Cell-cycle analysis by flow cytometry showed that restimulation of primed T cells in the presence of HLA-DQA1 resulted in increased apoptosis, whereas unstimulated cells were not affected. These data demonstrate that synthetic peptides derived from highly conserved regions of the class II MHC α chain can alter CD4+ T-lymphocyte alloimmune responses in vitro, and this effect is mediated by the induction of apoptosis in activated T cells.
Barbara Murphy, Colm C. Magee, Stephen I. Alexander, Ana Maria Waaga, Hans W. Snoeck, John P. Vella, Charles B. Carpenter, Mohamed H. Sayegh
Sequences of class II MHC peptides