A line of mice deficient in vitamin D binding protein (DBP) was generated by targeted mutagenesis to establish a model for analysis of DBP's biological functions in vitamin D metabolism and action. On vitamin D–replete diets, DBP–/– mice had low levels of total serum vitamin D metabolites but were otherwise normal. When maintained on vitamin D–deficient diets for a brief period, the DBP–/–, but not DBP+/+, mice developed secondary hyperparathyroidism and the accompanying bone changes associated with vitamin D deficiency. DBP markedly prolonged the serum half-life of 25(OH)D and less dramatically prolonged the half-life of vitamin D by slowing its hepatic uptake and increasing the efficiency of its conversion to 25(OH)D in the liver. After an overload of vitamin D, DBP–/– mice were unexpectedly less susceptible to hypercalcemia and its toxic effects. Peak steady-state mRNA levels of the vitamin D–dependent calbindin-D9K gene were induced by 1,25(OH)2D more rapidly in the DBP–/– mice. Thus, the role of DBP is to maintain stable serum stores of vitamin D metabolites and modulate the rates of its bioavailability, activation, and end-organ responsiveness. These properties may have evolved to stabilize and maintain serum levels of vitamin D in environments with variable vitamin D availability.
Fayez F. Safadi, Paul Thornton, Holly Magiera, Bruce W. Hollis, Michael Gentile, John G. Haddad, Stephen A. Liebhaber, Nancy E. Cooke
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,412 | 141 |
90 | 33 | |
Figure | 376 | 4 |
Table | 43 | 0 |
Citation downloads | 77 | 0 |
Totals | 1,998 | 178 |
Total Views | 2,176 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.