Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Expression of the AT2 receptor developmentally programs extracellular signal-regulated kinase activity and influences fetal vascular growth
Masahiro Akishita, … , Victor J. Dzau, Masatsugu Horiuchi
Masahiro Akishita, … , Victor J. Dzau, Masatsugu Horiuchi
Published January 1, 1999
Citation Information: J Clin Invest. 1999;103(1):63-71. https://doi.org/10.1172/JCI5182.
View: Text | PDF
Article Article has an altmetric score of 6

Expression of the AT2 receptor developmentally programs extracellular signal-regulated kinase activity and influences fetal vascular growth

  • Text
  • PDF
Abstract

Angiotensin II type 2 (AT2) receptor is abundantly expressed in vascular smooth muscle cells (VSMC) of the fetal vasculature during late gestation (embryonic day 15–20), during which the blood vessels undergo remodeling. To examine directly the influence of AT2 receptor expression in the developmental biology of VSMC, we studied cultures of VSMC from fetal and postnatal wild-type (Agtr2+) and AT2 receptor null (Agtr2–) mice. Consistent with in vivo data, AT2 receptor binding in cultured Agtr2+ VSMC increased by age, peaking at embryonic day 20, and decreased dramatically after birth. Angiotensin II–induced growth in Agtr2+ VSMC (embryonic day 20) was increased by the AT2 receptor blocker PD123319, indicating that the AT2 receptors are functional and exert an antigrowth effect in Agtr2+ VSMC. Growth of VSMC in response to serum decreased age dependently and was higher in Agtr2– than in Agtr2+, inversely correlating with AT2 receptor expression. However, serum-induced growth in Agtr2+ and Agtr2– VSMC and the exaggerated Agtr2– VSMC growth was maintained even in the presence of PD123319 or losartan, an AT1 receptor blocker. Moreover, Agtr2– VSMC showed greater growth responses to platelet-derived growth factor and basic fibroblast growth factor, indicating that Agtr2– cells exhibit a generalized exaggerated growth phenotype. We studied the mechanism responsible for this phenotype and observed that extracellular signal-regulated kinase (ERK) activity was higher in Agtr2– VSMC at baseline and also in response to serum. ERK kinase inhibitor PD98059 inhibited both growth and ERK phosphorylation dose–dependently, while the regression lines between growth and ERK phosphorylation were identical in Agtr2+ and Agtr2– VSMC, suggesting that increased ERK activity in Agtr2– VSMC is pivotal in the growth enhancement. Furthermore, the difference in ERK phosphorylation between Agtr2+ and Agtr2– was abolished by vanadate but not by okadaic acid, implicating tyrosine phosphatase in the difference in ERK activity. These results suggest that the AT2 receptor expression during the fetal vasculogenesis influences the growth phenotype of VSMC via the modulation of ERK cascade.

Authors

Masahiro Akishita, Masaaki Ito, Jukka Y.A. Lehtonen, Laurent Daviet, Victor J. Dzau, Masatsugu Horiuchi

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 512 29
PDF 68 9
Figure 309 4
Citation downloads 59 0
Totals 948 42
Total Views 990
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 patents
Referenced in 2 Wikipedia pages
26 readers on Mendeley
See more details