Leptin exerts a permissive action on puberty by stimulating release of gonadotropin-releasing hormone (GnRH) in the hypothalamus. However, GnRH neurons lack leptin receptor (LepR), indicating that leptin must indirectly regulate these neurons. The Kiss1 gene produces kisspeptins that stimulate GnRH secretion. Because Kiss1 neurons express LepR and inactivation of Kiss1 causes hypogonadotropic hypogonadism, Donato et al., in this issue of the JCI, assessed whether deletion of LepR from Kiss1 neurons would prevent sexual maturation. Unexpectedly, mice lacking LepR in Kiss1 neurons had normal pubertal development and fertility. In contrast, deletion of LepR from the ventral premammillary nucleus, a region of the brain involved in sexual behavior, prevented puberty and fertility. These findings highlight the complex biology of leptin in reproduction.
Rexford S. Ahima
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 458 | 38 |
75 | 17 | |
Figure | 147 | 1 |
Citation downloads | 57 | 0 |
Totals | 737 | 56 |
Total Views | 793 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.