Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Is ryanodine receptor phosphorylation key to the fight or flight response and heart failure?
Thomas Eschenhagen
Thomas Eschenhagen
Published November 22, 2010
Citation Information: J Clin Invest. 2010;120(12):4197-4203. https://doi.org/10.1172/JCI45251.
View: Text | PDF
Commentary Article has an altmetric score of 3

Is ryanodine receptor phosphorylation key to the fight or flight response and heart failure?

  • Text
  • PDF
Abstract

In situations of stress the heart beats faster and stronger. According to Marks and colleagues, this response is, to a large extent, the consequence of facilitated Ca2+ release from intracellular Ca2+ stores via ryanodine receptor 2 (RyR2), thought to be due to catecholamine-induced increases in RyR2 phosphorylation at serine 2808 (S2808). If catecholamine stimulation is sustained (for example, as occurs in heart failure), RyR2 becomes hyperphosphorylated and “leaky,” leading to arrhythmias and other pathology. This “leaky RyR2 hypothesis” is highly controversial. In this issue of the JCI, Marks and colleagues report on two new mouse lines with mutations in S2808 that provide strong evidence supporting their theory. Moreover, the experiments revealed an influence of redox modifications of RyR2 that may account for some discrepancies in the field.

Authors

Thomas Eschenhagen

×

Figure 2

The leaky RyR2 hypothesis: phosphorylation and oxidation of RyR2 in the center of a vicious circle in heart failure.

Options: View larger image (or click on image) Download as PowerPoint
The leaky RyR2 hypothesis: phosphorylation and oxidation of RyR2 in the ...
According to Marks and colleagues, catecholamines control excitation-contraction coupling gain not only at the level of LTCCs and PLB, but also at the level of RyR2 by phosphorylating it at S2808. The latter reduces RyR2 affinity for the stabilizing accessory protein, FKBP12.6, and increases its open probability. In heart failure, sustained catecholamine stimulation leads to hyperphosphorylation, leaky RyR2, spontaneous Ca2+ release and, via NCX, spontaneous depolarizations. The new data presented in this issue of the JCI (25, 26) now suggest that phosphorylation at S2808 alone does not suffice to dissociate FKBP12.6 but that it needs oxidation of the channel plus phosphorylation. The level of oxidizing ROS is commonly increased in heart failure and, importantly, the increased Ca2+ leak from RyR2 (in consequence of oxidation and phosphorylation) further increases ROS production, e.g., from mitochondria. This constitutes a classical vicious circle. Black arrows and lettering indicate basic excitation-contraction coupling; red arrows indicate changes under chronic catecholamine stimulation and heart failure. The red dotted line indicates Ca2+ leak. Adapted with permission from Nature (35).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 patents
77 readers on Mendeley
See more details