Induction of virus-specific CD8+ T cell responses is critical for the success of vaccines against chronic viral infections. Despite the large number of potential MHC-I–restricted epitopes located in viral proteins, MHC-I–restricted epitope generation is inefficient, and factors defining the production and presentation of MHC-I–restricted viral epitopes are poorly understood. Here, we have demonstrated that the half-lives of HIV-derived peptides in cytosol from primary human cells were highly variable and sequence dependent, and significantly affected the efficiency of cell recognition by CD8+ T cells. Furthermore, multiple clinical isolates of HLA-associated HIV epitope variants displayed reduced half-lives relative to consensus sequence. This decreased cytosolic peptide stability diminished epitope presentation and CTL recognition, illustrating a mechanism of immune escape. Chaperone complexes including Hsp90 and histone deacetylase HDAC6 enhanced peptide stability by transient protection from peptidase degradation. Based on empirical results with 166 peptides, we developed a computational approach utilizing a sequence-based algorithm to estimate the cytosolic stability of antigenic peptides. Our results identify sequence motifs able to alter the amount of peptide available for loading onto MHC-I, suggesting potential new strategies to modulate epitope production from vaccine immunogens.
Estibaliz Lazaro, Carl Kadie, Pamela Stamegna, Shao Chong Zhang, Pauline Gourdain, Nicole Y. Lai, Mei Zhang, Sergio A. Martinez, David Heckerman, Sylvie Le Gall
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 370 | 24 |
61 | 10 | |
Figure | 273 | 5 |
Table | 134 | 0 |
Supplemental data | 77 | 0 |
Citation downloads | 66 | 0 |
Totals | 981 | 39 |
Total Views | 1,020 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.