Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
c-Maf and you won’t see fat
Laurie K. McCauley
Laurie K. McCauley
Published September 27, 2010
Citation Information: J Clin Invest. 2010;120(10):3440-3442. https://doi.org/10.1172/JCI44786.
View: Text | PDF
Commentary

c-Maf and you won’t see fat

  • Text
  • PDF
Abstract

Osteoporosis is a common, age-related bone disease that results from an imbalance between the processes of bone formation and bone resorption, resulting in reduced bone mass and increased risk of fracture. Mesenchymal stem cells have the capacity to differentiate into osteoblastic and adipogenic lineages; recent research suggests that the switch between these two fates may be key to the decreased bone density that occurs with aging. In this issue, Nishikawa et al. demonstrate that the basic leucine-zipper transcription factor Maf (also known as c-Maf) is central to osteoblast lineage commitment. In addition, they find that increased oxidative stress — as occurs with aging — decreases Maf expression. This work advances understanding of the transcriptional regulation of cell fate decisions and may help direct the development of new therapies to fight age-related bone loss.

Authors

Laurie K. McCauley

×

Figure 1

Maf expression determines whether MSCs differentiate toward the adipocyte or osteoblast lineage.

Options: View larger image (or click on image) Download as PowerPoint

Maf expression determines whether MSCs differentiate toward the adipocy...
The transcription factor Maf partners with Runx2 to regulate osteoblastic genes, such as osteocalcin (OCN). Maf is downregulated during aging and under the influence of reactive oxygen species (ROS) and thiazolidinediones (TZDs), pharmaceutical drugs for the treatment of diabetes. Downregulation of Maf leads to increased PPARG through the activation of C/EBPδ/α and leads to increased adipogenesis. PPARG itself also downregulates Maf, promulgating a cycle of adipogenesis. Antioxidants promote Maf expression and reverse the adipogenic phenotype, resulting in greater bone formation. Other factors that increase Maf may provide promising therapeutic strategies for the treatment of age-associated bone loss.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts