MicroRNAs (miRNAs) are potent regulators of mRNA stability and thereby protein expression. As such, miRNAs have become of interest as possible therapeutics and/or therapeutic targets. In this context, small complementary miRNA sequences known as antagomirs could be used to inhibit miRNA activity, while miRNA mimics could confer gain-of-function activity. However, a note of caution is sounded by Patrick et al. in this issue of the JCI, as they show that although recent reports have suggested that an miR-21 antagomir might be therapeutically useful in preventing heart failure in mice, genetic deletion of miR-21 does not confer a similar phenotype, suggesting possible confounding factors that are only now beginning to be revealed in the techniques used to study miRNA biology.
Edward E. Morrisey
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 250 | 28 |
68 | 15 | |
Figure | 73 | 4 |
Citation downloads | 45 | 0 |
Totals | 436 | 47 |
Total Views | 483 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.