Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Advances and challenges in malaria vaccine development
Peter D. Crompton, … , Susan K. Pierce, Louis H. Miller
Peter D. Crompton, … , Susan K. Pierce, Louis H. Miller
Published December 1, 2010
Citation Information: J Clin Invest. 2010;120(12):4168-4178. https://doi.org/10.1172/JCI44423.
View: Text | PDF
Science in Medicine Article has an altmetric score of 13

Advances and challenges in malaria vaccine development

  • Text
  • PDF
Abstract

Malaria caused by Plasmodium falciparum remains a major public health threat, especially among children and pregnant women in Africa. An effective malaria vaccine would be a valuable tool to reduce the disease burden and could contribute to elimination of malaria in some regions of the world. Current malaria vaccine candidates are directed against human and mosquito stages of the parasite life cycle, but thus far, relatively few proteins have been studied for potential vaccine development. The most advanced vaccine candidate, RTS,S, conferred partial protection against malaria in phase II clinical trials and is currently being evaluated in a phase III trial in Africa. New vaccine targets need to be identified to improve the chances of developing a highly effective malaria vaccine. A better understanding of the mechanisms of naturally acquired immunity to malaria may lead to insights for vaccine development.

Authors

Peter D. Crompton, Susan K. Pierce, Louis H. Miller

×

Figure 2

Schematic representation of the CSP and the RTS,S vaccine.

Options: View larger image (or click on image) Download as PowerPoint
Schematic representation of the CSP and the RTS,S vaccine.
The CSP is th...
The CSP is the predominant surface antigen on sporozoites. CSP is composed of an N-terminal region that binds heparin sulfate proteoglycans (RI), a central region containing a four-amino-acid (NANP) repeat, and a GPI-anchored C-terminal region containing a thrombospondin-like domain (RII). The region of the CSP included in the RTS,S vaccine includes the last 16 NANP repeats and the entire flanking C-terminus. HBsAg particles serve as the matrix carrier for RTS,S, 25% of which is fused to the CSP segment. The central repeat region contains the immunodominant B cell epitope, which induces antibodies that block sporozoite infection of liver cells in vitro (111, 112). RTS,S immunization induces antibodies to the central repeat region that correlate with protection from P. falciparum infection (46, 47) but not clinical disease (41, 45, 46). RTS,S also includes the thrombospondin domain, which binds receptors on liver cells (113). Monoclonal antibodies to the thrombospondin domain also block sporozoite invasion of liver cells, but to a lesser degree than antibodies to the repeat region (112). The CSP contains three known T cell epitopes: a highly variable CD4+ T cell epitope before the thrombospondin domain (114), a highly variable CD8+ T cell epitope within the thrombospondin domain (115), and a conserved “universal” CD4+ T cell epitope at the C-terminus (116). RTS,S induces a moderate CS-specific CD4+ T cell response that weakly correlates with protection from infection (37, 38), but RTS,S does not appear to induce a substantial CS-specific CD8+ T cell response (37, 117, 118).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 4 X users
Referenced in 35 patents
On 2 Facebook pages
Referenced in 8 Wikipedia pages
639 readers on Mendeley
1 readers on CiteULike
See more details