Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Advances and challenges in malaria vaccine development
Peter D. Crompton, … , Susan K. Pierce, Louis H. Miller
Peter D. Crompton, … , Susan K. Pierce, Louis H. Miller
Published December 1, 2010
Citation Information: J Clin Invest. 2010;120(12):4168-4178. https://doi.org/10.1172/JCI44423.
View: Text | PDF
Science in Medicine Article has an altmetric score of 13

Advances and challenges in malaria vaccine development

  • Text
  • PDF
Abstract

Malaria caused by Plasmodium falciparum remains a major public health threat, especially among children and pregnant women in Africa. An effective malaria vaccine would be a valuable tool to reduce the disease burden and could contribute to elimination of malaria in some regions of the world. Current malaria vaccine candidates are directed against human and mosquito stages of the parasite life cycle, but thus far, relatively few proteins have been studied for potential vaccine development. The most advanced vaccine candidate, RTS,S, conferred partial protection against malaria in phase II clinical trials and is currently being evaluated in a phase III trial in Africa. New vaccine targets need to be identified to improve the chances of developing a highly effective malaria vaccine. A better understanding of the mechanisms of naturally acquired immunity to malaria may lead to insights for vaccine development.

Authors

Peter D. Crompton, Susan K. Pierce, Louis H. Miller

×

Figure 1

The P. falciparum life cycle.

Options: View larger image (or click on image) Download as PowerPoint
The P. falciparum life cycle.
   
The P. falciparum life cycle in humans...
The P. falciparum life cycle in humans includes the pre-erythrocytic stage, which initiates the infection; the asexual blood stage, which causes disease; and the gametocyte stage, which infects mosquitoes that transmit the parasite. At each of these stages, the parasite expresses proteins that are targets of malaria vaccine candidates (Tables 1–3). The pre-erythrocytic stage begins when a female Anopheles mosquito inoculates sporozoites into the skin or directly into the bloodstream. Sporozoites migrate to the liver and infect a small number of hepatocytes. A single sporozoite gives rise to tens of thousands of asexual parasites called merozoites. Merozoites exit the liver into the bloodstream approximately one week later, leaving no residual parasites in the liver. The pre-erythrocytic stage does not cause disease, and complete immunity to this stage is not induced through natural P. falciparum infection. Merozoites entering the bloodstream begin a cycle of erythrocyte invasion, replication, erythrocyte rupture, and merozoite release that repeats approximately every 48 hours. Symptoms of malaria only occur during the blood stage of infection. Immunity that protects against disease but not infection per se can be acquired by individuals who are repeatedly infected in endemic areas. A small percentage of blood-stage asexual parasites convert to sexual forms, or gametocytes, which can infect mosquitoes. The mosquito stage is a potential target for transmission-blocking vaccines, as the parasite in the mosquito midgut is present extracellularly and in relatively small numbers. Possible immune mechanisms at each stage are indicated.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 4 X users
Referenced in 35 patents
On 2 Facebook pages
Referenced in 8 Wikipedia pages
639 readers on Mendeley
1 readers on CiteULike
See more details