Type 1A diabetes (T1D) is an autoimmune disease characterized by leukocyte infiltration of the pancreatic islets of Langerhans. A major impediment to advances in understanding, preventing, and curing T1D has been the inability to “see” the disease initiate, progress, or regress, especially during the occult phase. Here, we report the development of a noninvasive method to visualize T1D at the target organ level in patients with active insulitis. Specifically, we visualized islet inflammation, manifest by microvascular changes and monocyte/macrophage recruitment and activation, using magnetic resonance imaging of magnetic nanoparticles (MNPs). As a proof of principle for this approach, imaging of infused ferumoxtran-10 nanoparticles permitted effective visualization of the pancreas and distinction of recent-onset diabetes patients from nondiabetic controls. The observation that MNPs accumulate in the pancreas of T1D patients opens the door to exploiting this noninvasive imaging method to follow T1D progression and monitoring the ability of immunomodulatory agents to clear insulitis.
Jason L. Gaglia, Alexander R. Guimaraes, Mukesh Harisinghani, Stuart E. Turvey, Richard Jackson, Christophe Benoist, Diane Mathis, Ralph Weissleder
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 653 | 73 |
106 | 39 | |
Figure | 151 | 6 |
Table | 37 | 0 |
Supplemental data | 34 | 1 |
Citation downloads | 54 | 0 |
Totals | 1,035 | 119 |
Total Views | 1,154 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.