Recent collaborative efforts have subclassified malignant glioblastomas into 4 clinical relevant subtypes based on their signature genetic lesions. Platelet-derived growth factor receptor α (PDGFRA) overexpression is concomitant with a loss of cyclin-dependent kinase inhibitor 2A (CDKN2A) locus (encoding P16INK4A and P14ARF) in a large number of tumors within one subtype of glioblastomas. Here we report that activation of PDGFRα conferred tumorigenicity to Ink4a/Arf-deficient mouse astrocytes and human glioma cells in the brain. Restoration of p16INK4a but not p19ARF suppressed PDGFRα-promoted glioma formation. Mechanistically, abrogation of signaling modules in PDGFRα that lost capacity to bind to SHP-2 or PI3K significantly diminished PDGFRα-promoted tumorigenesis. Furthermore, inhibition of SHP-2 by shRNAs or pharmacological inhibitors disrupted the interaction of PI3K with PDGFRα, suppressed downstream AKT/mTOR activation, and impaired tumorigenesis of Ink4a/Arf-null cells, whereas expression of an activated PI3K mutant rescued the effect of SHP-2 inhibition on tumorigenicity. PDGFRα and PDGF-A are co-expressed in clinical glioblastoma specimens, and such co-expression is linked with activation of SHP-2/AKT/mTOR signaling. Together, our data suggest that in glioblastomas with Ink4a/Arf deficiency, overexpressed PDGFRα promotes tumorigenesis through the PI3K/AKT/mTOR-mediated pathway regulated by SHP-2 activity. These findings functionally validate the genomic analysis of glioblastomas and identify SHP-2 as a potential target for treatment of glioblastomas.
Kun-Wei Liu, Haizhong Feng, Robert Bachoo, Andrius Kazlauskas, Erin M. Smith, Karen Symes, Ronald L. Hamilton, Motoo Nagane, Ryo Nishikawa, Bo Hu, Shi-Yuan Cheng
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 711 | 101 |
68 | 21 | |
Figure | 328 | 7 |
Supplemental data | 40 | 4 |
Citation downloads | 61 | 0 |
Totals | 1,208 | 133 |
Total Views | 1,341 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.