Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
A βIV-spectrin/CaMKII signaling complex is essential for membrane excitability in mice
Thomas J. Hund, … , Mark E. Anderson, Peter J. Mohler
Thomas J. Hund, … , Mark E. Anderson, Peter J. Mohler
Published September 27, 2010
Citation Information: J Clin Invest. 2010;120(10):3508-3519. https://doi.org/10.1172/JCI43621.
View: Text | PDF
Research Article Article has an altmetric score of 6

A βIV-spectrin/CaMKII signaling complex is essential for membrane excitability in mice

  • Text
  • PDF
Abstract

Ion channel function is fundamental to the existence of life. In metazoans, the coordinate activities of voltage-gated Na+ channels underlie cellular excitability and control neuronal communication, cardiac excitation-contraction coupling, and skeletal muscle function. However, despite decades of research and linkage of Na+ channel dysfunction with arrhythmia, epilepsy, and myotonia, little progress has been made toward understanding the fundamental processes that regulate this family of proteins. Here, we have identified βIV-spectrin as a multifunctional regulatory platform for Na+ channels in mice. We found that βIV-spectrin targeted critical structural and regulatory proteins to excitable membranes in the heart and brain. Animal models harboring mutant βIV-spectrin alleles displayed aberrant cellular excitability and whole animal physiology. Moreover, we identified a regulatory mechanism for Na+ channels, via direct phosphorylation by βIV-spectrin–targeted calcium/calmodulin-dependent kinase II (CaMKII). Collectively, our data define an unexpected but indispensable molecular platform that determines membrane excitability in the mouse heart and brain.

Authors

Thomas J. Hund, Olha M. Koval, Jingdong Li, Patrick J. Wright, Lan Qian, Jedidiah S. Snyder, Hjalti Gudmundsson, Crystal F. Kline, Nathan P. Davidson, Natalia Cardona, Matthew N. Rasband, Mark E. Anderson, Peter J. Mohler

×

Figure 5

βIV-spectrin/CaMKII regulates Nav1.5 phosphorylation.

Options: View larger image (or click on image) Download as PowerPoint
βIV-spectrin/CaMKII regulates Nav1.5 phosphorylation.
   
(A) CaMKII con...
(A) CaMKII consensus phosphorylation sites in intracellular domains of Nav1.5. (B and C) Na+ channel steady-state inactivation measured from WT and Nav1.5 mutant channels expressed in HEK cells. *P < 0.05 versus WT. (D) Summary data showing depolarizing shift in steady-state inactivation V1/2 following CaMKII activation for WT and all mutants except S571A. Black, before CaMKII activation; blue, after CaMKII activation. (E) CaMKII phosphorylation assay on intracellular domains of Nav1.5. β2a was used as positive control. Asterisks denote location of purified proteins. (F and G) Na+ channel steady-state inactivation measured from WT, S571A, and S571E (phosphomimetic) channels expressed in HEK cells. *P < 0.05 versus WT. (H) Nav1.5 S571 antibody recognized WT, but not Nav1.5 S571A mutant, channels. WT and mutant channels were expressed at equivalent levels in HEK293 cells overexpressing active CaMKIIδ. (I) Immunoblots showing reduced levels of phospho–Nav1.5 S571, but unchanged total Nav1.5 levels, in qv3J versus WT heart lysates. Actin is shown as loading control.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 4 patents
141 readers on Mendeley
See more details