Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Autoimmunity in MFG-E8–deficient mice is associated with altered trafficking and enhanced cross-presentation of apoptotic cell antigens
YuFeng Peng, Keith B. Elkon
YuFeng Peng, Keith B. Elkon
Published May 2, 2011
Citation Information: J Clin Invest. 2011;121(6):2221-2241. https://doi.org/10.1172/JCI43254.
View: Text | PDF | Erratum
Research Article Autoimmunity Article has an altmetric score of 7

Autoimmunity in MFG-E8–deficient mice is associated with altered trafficking and enhanced cross-presentation of apoptotic cell antigens

  • Text
  • PDF
Abstract

Apoptotic cells must be rapidly cleared, as defects in this process can lead to autoimmunity. Milk fat globule EGF factor 8 (MFG-E8) binds to apoptotic cells and facilitates their removal through interaction with phagocytes. Mice deficient in MFG-E8 develop lupus-like autoimmunity associated with accumulation of apoptotic cells in vivo. Here, we have shown that MFG-E8 controls phagocytic ingestion of cell fragments as well as their intracellular processing into MHC-antigen complexes. Older Mfge8–/– mice spontaneously developed dermatitis associated with CD8+ T cell infiltration and striking activation of effector memory CD8+ T cells. CD8+ T cell responses to both exogenous and endogenous apoptotic cell–associated antigens were enhanced in Mfge8–/– mice. MFG-E8 deficiency accelerated the onset of disease in a mouse model of autoimmune diabetes. Enhanced CD8+ T cell responses were attributed to increased cross-presentation by DCs along with increased detection of antigen-MHCI complexes. Intracellular trafficking analysis revealed that intact apoptotic cells ingested by wild-type DCs rapidly fused with lysosomes, whereas smaller fragments persisted in Mfge8–/– DC endosomal compartments for 24 hours. These observations suggest that MFG-E8 deficiency promotes immune responses to self antigens not only by delaying the clearance of dying cells but also by altering intracellular processing, leading to enhanced self-antigen presentation.

Authors

YuFeng Peng, Keith B. Elkon

×

Figure 3

MFG-E8 deficiency enhances cross-presentation of endogenous OVA antigen.

Options: View larger image (or click on image) Download as PowerPoint
MFG-E8 deficiency enhances cross-presentation of endogenous OVA antigen....
(A) 5 × 106 OT-I T cells were transferred into 2- to 4-month-old WT (n = 11) or Mfge8–/– RIP-mOVA (n = 13) mice. The frequency and the time of onset of diabetes are shown. **P = 0.0001. (B) 5 × 106 CD45.1/CD45.2 OT-I T cells were labeled with CFSE and transferred into 2-month-old WT or Mfge8–/– RIP-mOVA mice as in A. Lymphocytes from the pancreatic draining LNs (panLNs) and distal LNs were recovered at day 5 and restimulated with OVA peptide. Proliferation (middle panels) and expression of IFN-γ by OT-I T cells (lower panels) were evaluated by flow cytometry. The dot plots are representative of 5 mice from each group. The numbers in the dot plots (upper panels) denote the percentages of OT-I T cells; those in the histogram (middle panels) show the percentages of dividing cells and those in the dot plots (lower panels) show the percentage of each population. (C) The absolute numbers of IFN-γ–positive OT-I T cells recovered from draining or distal LNs are shown. *P = 0.01. (D) H&E staining of the pancreas from either WT or Mfge8–/– RIP-mOVA mice at day 7 after transfer of OT-I T cells. Note the intense infiltration of lymphocytes in both endocrine and exocrine (white arrow) tissues in the pancreas of Mfge8–/– RIP-mOVA mice. The results are representative of 5 mice in each group. Original magnifications, ×40.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Blogged by 1
Highlighted by 1 platforms
114 readers on Mendeley
See more details