Dysfunction of pancreatic islet β cells underlies both type 1 and type 2 diabetes and appears to result in part from the local release of proinflammatory cytokines. An improved understanding of the mechanisms that mediate islet responsiveness to proinflammatory cytokines may therefore expand our knowledge of the role of cytokine signaling in the development of diabetes, providing potential new targets for the development of therapeutics to protect pancreatic islets from inflammation. In this issue of the JCI, Maier and colleagues identify eukaryotic translation initiation factor 5A (eIF5A) as a critical regulator of the inflammatory response in mouse pancreatic islets. I believe these data provide new and important insights into the regulatory pathways that contribute to the development of diabetes and deepen our understanding of the function of the, so far, rather enigmatic cellular protein eIF5A.
Joachim Hauber
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 123 | 22 |
57 | 18 | |
Figure | 53 | 2 |
Citation downloads | 51 | 0 |
Totals | 284 | 42 |
Total Views | 326 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.