Cancer cells have an efficient antioxidant system to counteract their increased generation of ROS. However, whether this ability to survive high levels of ROS has an important role in the growth and metastasis of tumors is not well understood. Here, we demonstrate that the redox protein thioredoxin-like 2 (TXNL2) regulates the growth and metastasis of human breast cancer cells through a redox signaling mechanism. TXNL2 was found to be overexpressed in human cancers, including breast cancers. Knockdown of TXNL2 in human breast cancer cell lines increased ROS levels and reduced NF-κB activity, resulting in inhibition of in vitro proliferation, survival, and invasion. In addition, TXNL2 knockdown inhibited tumorigenesis and metastasis of these cells upon transplantation into immunodeficient mice. Furthermore, analysis of primary breast cancer samples demonstrated that enhanced TXNL2 expression correlated with metastasis to the lung and brain and with decreased overall patient survival. Our studies provided insight into redox-based mechanisms underlying tumor growth and metastasis and suggest that TXNL2 could be a target for treatment of breast cancer.
Ying Qu, Jinhua Wang, Partha S. Ray, Hua Guo, Jian Huang, Miyung Shin-Sim, Bolanle A. Bukoye, Bingya Liu, Adrian V. Lee, Xin Lin, Peng Huang, John W. Martens, Armando E. Giuliano, Ning Zhang, Ning-Hui Cheng, Xiaojiang Cui
TXNL2 expression in human primary breast cancer predicts the occurrence of metastasis to lung and brain.