Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Pivotal role of the CCL5/CCR5 interaction for recruitment of endothelial progenitor cells in mouse wound healing
Yuko Ishida, … , Naofumi Mukaida, Toshikazu Kondo
Yuko Ishida, … , Naofumi Mukaida, Toshikazu Kondo
Published January 3, 2012
Citation Information: J Clin Invest. 2012;122(2):711-721. https://doi.org/10.1172/JCI43027.
View: Text | PDF
Research Article Dermatology Article has an altmetric score of 5

Pivotal role of the CCL5/CCR5 interaction for recruitment of endothelial progenitor cells in mouse wound healing

  • Text
  • PDF
Abstract

BM-derived endothelial progenitor cells (EPCs) are critical and essential for neovascularization in tissue repair and tumorigenesis. EPCs migrate from BM to tissues via the bloodstream, but specific chemotactic cues have not been identified. Here we show in mice that the absence of CCR5 reduced vascular EPC accumulation and neovascularization, but not macrophage recruitment, and eventually delayed healing in wounded skin. When transferred into Ccr5–/– mice, Ccr5+/+ BM cells, but not Ccr5–/– cells, accumulated in the wound site, were incorporated into the vasculature, and restored normal neovascularization. Consistent with these observations, CCL5 induced in vitro EPC migration in a CCR5-dependent manner. Moreover, expression of VEGF and TGF-β was substantially diminished at wound sites in Ccr5–/– mice, which suggests that EPCs are important not only as the progenitors of endothelial cells, but also as the source of growth factors during tissue repair. Taken together, these data identify the CCL5/CCR5 interaction as what we believe to be a novel molecular target for modulation of neovascularization and eventual tissue repair.

Authors

Yuko Ishida, Akihiko Kimura, Yumi Kuninaka, Masanori Inui, Kouji Matsushima, Naofumi Mukaida, Toshikazu Kondo

×

Figure 4

Effects of BM transplantation on skin wound healing of recipient mice transplanted with BM cells from WT or Ccr5–/– donors.

Options: View larger image (or click on image) Download as PowerPoint
Effects of BM transplantation on skin wound healing of recipient mice tr...
(A) Kinetic analysis of skin excisional wound healing. Representative results from 2 independent experiments with at least 5 animals per group are shown. (B) Percent wound area at each time point relative to original area (n = 5). (C) Quantitative RT-PCR analysis for Col1a1 mRNA at wound sites (n = 5). (D) Immunohistochemical analysis with anti-CD31 mAb at 6 days after injury. Representative results from 6 individual animals are shown. (E) Vascular area, identified as percent CD31+ area with Adobe Photoshop (n = 6). (F) Migration of PKH26-labeled BM cells at wound sites in BM chimeric mice at day 6 after injury. Representative results from 6 individual animals are shown. (G) PKH26-labeled BM cells recruited at the wound sites colocalized with CD31+ endothelial cells. Nuclear staining is blue. Original magnification, ×200 (D and F); ×400 (G). All values represent mean ± SEM. *P < 0.05, **P < 0.01 versus respective recipients of Ccr5–/– BM cells.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 4 X users
Referenced in 1 patents
On 2 Facebook pages
66 readers on Mendeley
See more details