Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Putting the brakes on BTLA in T cell–mediated cancer immunotherapy
Chrystal M. Paulos, Carl H. June
Chrystal M. Paulos, Carl H. June
Published December 28, 2009
Citation Information: J Clin Invest. 2010;120(1):76-80. https://doi.org/10.1172/JCI41811.
View: Text | PDF
Commentary Article has an altmetric score of 12

Putting the brakes on BTLA in T cell–mediated cancer immunotherapy

  • Text
  • PDF
Abstract

Attenuating coinhibitory molecules for the treatment of cancer is gaining a great deal of attention as a strategy for immunotherapy. The B and T lymphocyte attenuator (BTLA, CD272) is a novel coinhibitory molecule structurally and functionally related to CTLA-4 and PD-1. A study in this issue of the JCI by Derré et al. reveals that BTLA is expressed on virus-specific human CD8+ T cells but is progressively downregulated after their differentiation from a naive to effector phenotype (see the related article beginning on page 157). Surprisingly, tumor-specific human CD8+ T cells continue to express BTLA even after their differentiation to an effector phenotype. Remarkably, vaccination of melanoma patients with CpG led to BTLA downregulation on tumor-specific human CD8+ T cells, concomitant with restoration of their functionality. We discuss these findings in the context of the expanding field of cosignaling molecules and their implications for T cell–based therapies for cancer.

Authors

Chrystal M. Paulos, Carl H. June

×

Figure 3

Models of interaction among HVEM, BTLA, CD160, and LIGHT and their various functional effects on tumor-specific human CD8+ T cells.

Options: View larger image (or click on image) Download as PowerPoint
Models of interaction among HVEM, BTLA, CD160, and LIGHT and their vario...
BTLA, CD160, and LIGHT are differentially expressed on tumor-specific CD8+ T cells, and depending on their expression, they can mediate distinct outcomes: immune tolerance or effective immunity against tumor targets. Three potential interactions are shown. Left: If BTLA or CD160 is expressed and LIGHT expression is either low or absent, the coinhibitory BTLA-CD160-HVEM complex will be dominant, resulting in negative regulation of the tumor-specific CD8+ T cell by the human tumor. Middle: If LIGHT, BTLA, and CD160 are all expressed, they might form a complex with HVEM. This could trimerize HVEM, resulting in positive or negative regulation of the T cell by the tumor. Right: If LIGHT is expressed with little to no BTLA or CD160, the tumor-specific T cells receive a positive signal from the HVEM-expressing tumor, resulting in robust functional activation of the tumor-specific T cell. Thus, attenuation of BTLA via either CpG or antibody blockade might augment T cell–mediated immunotherapy for cancer. Potent tumor-specific T cell responses are mediated with conventional vaccination and CpG, which downregulates BLTA expression on T cells, as revealed by new findings reported by Derré et al. (9) and as represented in the right panel. Adapted with permission from Trends in immunology (22).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 11 patents
88 readers on Mendeley
See more details