Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Lung fluid transport in aquaporin-1 and aquaporin-4 knockout mice
Chunxue Bai, … , Michael A. Matthay, A.S. Verkman
Chunxue Bai, … , Michael A. Matthay, A.S. Verkman
Published February 15, 1999
Citation Information: J Clin Invest. 1999;103(4):555-561. https://doi.org/10.1172/JCI4138.
View: Text | PDF
Article

Lung fluid transport in aquaporin-1 and aquaporin-4 knockout mice

  • Text
  • PDF
Abstract

The mammalian lung expresses water channel aquaporin-1 (AQP1) in microvascular endothelia and aquaporin-4 (AQP4) in airway epithelia. To test whether these water channels facilitate fluid movement between airspace, interstitial, and capillary compartments, we measured passive and active fluid transport in AQP1 and AQP4 knockout mice. Airspace–capillary osmotic water permeability (Pf) was measured in isolated perfused lungs by a pleural surface fluorescence method. Pf was remarkably reduced in AQP1 (–/–) mice (measured in cm/s × 0.001, SE, n = 5–10: 17 ± 2 [+/+]; 6.6 ± 0.6 AQP1 [+/–]; 1.7 ± 0.3 AQP1 [–/–]; 12 ± 1 AQP4 [–/–]). Microvascular endothelial water permeability, measured by a related pleural surface fluorescence method in which the airspace was filled with inert perfluorocarbon, was reduced more than 10-fold in AQP1 (–/–) vs. (+/+) mice. Hydrostatically induced lung interstitial and alveolar edema was measured by a gravimetric method and by direct measurement of extravascular lung water. Both approaches indicated a more than twofold reduction in lung water accumulation in AQP1 (–/–) vs. (+/+) mice in response to a 5- to 10-cm H2O increase in pulmonary artery pressure for five minutes. Active, near-isosmolar alveolar fluid absorption (Jv) was measured in in situ perfused lungs using 125I-albumin as an airspace fluid volume marker. Jv (measured in percent fluid uptake at 30 min, n = 5) in (+/+) mice was 6.0 ± 0.6 (37°C), increased to 16 ± 1 by β-agonists, and inhibited to less than 2.0 by amiloride, ouabain, or cooling to 23°C. Jv (with isoproterenol) was not affected by aquaporin deletion (18.9 ± 2.2 [+/+]; 16.4 ± 1.5 AQP1 [–/–]; 16.3 ± 1.7 AQP4 [–/–]). These results indicate that osmotically driven water transport across microvessels in adult lung occurs by a transcellular route through AQP1 water channels and that the microvascular endothelium is a significant barrier for airspace–capillary osmotic water transport. AQP1 facilitates hydrostatically driven lung edema but is not required for active near-isosmolar absorption of alveolar fluid.

Authors

Chunxue Bai, Norimasa Fukuda, Yualin Song, Tonghui Ma, Michael A. Matthay, A.S. Verkman

×

Figure 3

Options: View larger image (or click on image) Download as PowerPoint
Gravimetric measurement of hydrostatically driven lung edema. (a) Lung w...
Gravimetric measurement of hydrostatically driven lung edema. (a) Lung weight was monitored continuously in isolated lungs perfused with an isosmolar solution at hydrostatic pressures of 8 or 18 cm H2O as set by adjusting reservoir height (see Methods). (b) Original records of the time course of lung weight increase in response to change in pulmonary artery pressure from 8 to 18 cm H2O. Weight was calibrated in every experiment by briefly suspending a 100-mg weight standard from the lung.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts