The role of B cells and autoimmunity as contributing factors to poor neurological outcomes following spinal cord injury (SCI) is poorly understood. The study by Ankeny et al., in this issue of the JCI, identifies a new immunopathological mechanism arising after SCI in mice (see the related article beginning on page 2990). The study shows that B cells produce pathogenic antibodies that impair lesion repair, resulting in worse neurological outcome. This new understanding of SCI disease pathogenesis, if confirmed in humans, reveals potential avenues for the development of novel neuroprotective immunotherapies.
Gregory A. Dekaban, Sakina Thawer
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 169 | 31 |
64 | 20 | |
Figure | 46 | 1 |
Citation downloads | 43 | 0 |
Totals | 322 | 52 |
Total Views | 374 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.