Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
A regulatory feedback loop involving p63 and IRF6 links the pathogenesis of 2 genetically different human ectodermal dysplasias
Francesca Moretti, … , Luisa Guerrini, Antonio Costanzo
Francesca Moretti, … , Luisa Guerrini, Antonio Costanzo
Published April 26, 2010
Citation Information: J Clin Invest. 2010;120(5):1570-1577. https://doi.org/10.1172/JCI40267.
View: Text | PDF
Research Article Article has an altmetric score of 2

A regulatory feedback loop involving p63 and IRF6 links the pathogenesis of 2 genetically different human ectodermal dysplasias

  • Text
  • PDF
Abstract

The human congenital syndromes ectrodactyly ectodermal dysplasia-cleft lip/palate syndrome, ankyloblepharon ectodermal dysplasia clefting, and split-hand/foot malformation are all characterized by ectodermal dysplasia, limb malformations, and cleft lip/palate. These phenotypic features are a result of an imbalance between the proliferation and differentiation of precursor cells during development of ectoderm-derived structures. Mutations in the p63 and interferon regulatory factor 6 (IRF6) genes have been found in human patients with these syndromes, consistent with phenotypes. Here, we used human and mouse primary keratinocytes and mouse models to investigate the role of p63 and IRF6 in proliferation and differentiation. We report that the ΔNp63 isoform of p63 activated transcription of IRF6, and this, in turn, induced proteasome-mediated ΔNp63 degradation. This feedback regulatory loop allowed keratinocytes to exit the cell cycle, thereby limiting their ability to proliferate. Importantly, mutations in either p63 or IRF6 resulted in disruption of this regulatory loop: p63 mutations causing ectodermal dysplasias were unable to activate IRF6 transcription, and mice with mutated or null p63 showed reduced Irf6 expression in their palate and ectoderm. These results identify what we believe to be a novel mechanism that regulates the proliferation-differentiation balance of keratinocytes essential for palate fusion and skin differentiation and links the pathogenesis of 2 genetically different groups of ectodermal dysplasia syndromes into a common molecular pathway.

Authors

Francesca Moretti, Barbara Marinari, Nadia Lo Iacono, Elisabetta Botti, Alessandro Giunta, Giulia Spallone, Giulia Garaffo, Emma Vernersson-Lindahl, Giorgio Merlo, Alea A. Mills, Costanza Ballarò, Stefano Alemà, Sergio Chimenti, Luisa Guerrini, Antonio Costanzo

×

Figure 2

p63 is required for Irf6 expression in vivo.

Options: View larger image (or click on image) Download as PowerPoint
p63 is required for Irf6 expression in vivo.
   
(A) The palatal phenoty...
(A) The palatal phenotype in E13.5 and newborn p63–/– embryos. The age is indicated at the top columns, and genotypes are reported to the left of rows. The images on the far right of each row illustrate the newborn specimens, after removal of the mandible (Md). The dashed black lines define the profile of the anatomical structures. In p63–/– embryos, the maxillae (Mx) and the secondary palate (pal II) fail to fuse with the primary palate (pal I) and the secondary palate fails to fuse on the midline (thin dashed red line, red asterisks). In situ hybridization for Msx1 and Irf6 on coronal sections of the tooth (E13.5, left) and palatal (E13.5, right) region of wild-type and p63–/– embryos. The section plane is indicated by thick dashed red lines. Expression of Msx1 is indicated with red arrows. Expression of Irf6 is reduced in the tooth and palate epithelia of the p63–/– specimen (black arrows and asterisks for wild-type and mutant, respectively). Scale bars: 1 mm (white); 50 μm (black). T, tongue. (B) RT-qPCR analysis of Irf6 mRNA in ectoderm of p63–/– mice aged E13.5 and EEC mice aged E16.5. The wild-type value is set as 1. Data are presented as mean ± SEM. *P = 0.01. (C) Skin sections from E16.5 wild-type (+/+) or p63+/EEC knock-in mice, immunostained with Irf6- or p63-specific antibodies. Irf6 immunostaining is strongly reduced in p63+/EEC mice, while p63 expression is increased. Images are representative of data obtained from 3 littermates for each genotype. Scale bars: 30 μm.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Mentioned by 1 peer review sites
Highlighted by 1 platforms
106 readers on Mendeley
See more details