Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
β-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice
John P. Morris IV, … , Sam C. Wang, Matthias Hebrok
John P. Morris IV, … , Sam C. Wang, Matthias Hebrok
Published January 11, 2010
Citation Information: J Clin Invest. 2010;120(2):508-520. https://doi.org/10.1172/JCI40045.
View: Text | PDF
Research Article Oncology Article has an altmetric score of 4

β-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice

  • Text
  • PDF
Abstract

Cellular plasticity in adult organs is involved in both regeneration and carcinogenesis. WT mouse acinar cells rapidly regenerate following injury that mimics acute pancreatitis, a process characterized by transient reactivation of pathways involved in embryonic pancreatic development. In contrast, such injury promotes the development of pancreatic ductal adenocarcinoma (PDA) precursor lesions in mice expressing a constitutively active form of the GTPase, Kras, in the exocrine pancreas. The molecular environment that mediates acinar regeneration versus the development of PDA precursor lesions is poorly understood. Here, we used genetically engineered mice to demonstrate that mutant Kras promotes acinar-to-ductal metaplasia (ADM) and pancreatic cancer precursor lesion formation by blocking acinar regeneration following acute pancreatitis. Our results indicate that β-catenin is required for efficient acinar regeneration. In addition, canonical β-catenin signaling, a pathway known to regulate embryonic acinar development, is activated following acute pancreatitis. This regeneration-associated activation of β-catenin signaling was not observed during the initiation of Kras-induced acinar-to-ductal reprogramming. Furthermore, stabilized β-catenin signaling antagonized the ability of Kras to reprogram acini into PDA preneoplastic precursors. Therefore, these results suggest that β-catenin signaling is a critical determinant of acinar plasticity and that it is inhibited during Kras-induced fate decisions that specify PDA precursors, highlighting the importance of temporal regulation of embryonic signaling pathways in the development of neoplastic cell fates.

Authors

John P. Morris IV, David A. Cano, Shigeki Sekine, Sam C. Wang, Matthias Hebrok

×

Figure 2

Mutant Kras blocks acinar regeneration in favor of a persistently dedifferentiated state.

Options: View larger image (or click on image) Download as PowerPoint
Mutant Kras blocks acinar regeneration in favor of a persistently dediff...
(A–H) Clusterin and Sox9 (I–P) expression during regeneration and Kras-induced ADM. (A and I) Clusterin expression is limited to some normal ducts in PBS-treated Pdx1-CreEarly mice, while Sox9 is restricted to ducts and centroacinar cells (arrowheads). (E and M) Acini in PBS-treated Pdx1-CreEarly;LSL-KrasG12D mice are negative for Clusterin and Sox9, while normal ducts and spontaneous PanINs are positive (asterisks). (B, F, J, and N) Damaged duct-like cells of both genotypes display clusterin- and Sox9-positive cells (insets). (C, D, K, and L) Clusterin and Sox9 are mainly restricted to duct cells (arrowheads) following regeneration in Pdx1-CreEarly pancreata. Rare clusterin-positive cells were observed 7 days following caerulein treatment (arrow, C). (G, H, O, and P) Clusterin and Sox9 remain strongly expressed in ADM and PanINs in Pdx1-CreEarly;LSL-KrasG12D mice. (Q) Schematic of failed regeneration of acini possessing mutant Kras (acini*) versus WT. WT acini transiently dedifferentiate and rapidly regenerate, while acini possessing mutant Kras are sensitized to persistent dedifferentiation and ADM/PanIN formation. Original magnification, ×400 (A–P; insets).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 2 patents
Highlighted by 1 platforms
254 readers on Mendeley
See more details