Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
MAPK phosphatase-1 facilitates the loss of oxidative myofibers associated with obesity in mice
Rachel J. Roth, … , Gerald I. Shulman, Anton M. Bennett
Rachel J. Roth, … , Gerald I. Shulman, Anton M. Bennett
Published November 16, 2009
Citation Information: J Clin Invest. 2009;119(12):3817-3829. https://doi.org/10.1172/JCI39054.
View: Text | PDF
Research Article Metabolism Article has an altmetric score of 6

MAPK phosphatase-1 facilitates the loss of oxidative myofibers associated with obesity in mice

  • Text
  • PDF
Abstract

Oxidative myofibers, also known as slow-twitch myofibers, help maintain the metabolic health of mammals, and it has been proposed that decreased numbers correlate with increased risk of obesity. The transcriptional coactivator PPARγ coactivator 1α (PGC-1α) plays a central role in maintaining levels of oxidative myofibers in skeletal muscle. Indeed, loss of PGC-1α expression has been linked to a reduction in the proportion of oxidative myofibers in the skeletal muscle of obese mice. MAPK phosphatase-1 (MKP-1) is encoded by mkp-1, a stress-responsive immediate-early gene that dephosphorylates MAPKs in the nucleus. Previously we showed that mice deficient in MKP-1 have enhanced energy expenditure and are resistant to diet-induced obesity. Here we show in mice that excess dietary fat induced MKP-1 overexpression in skeletal muscle, and that this resulted in reduced p38 MAPK–mediated phosphorylation of PGC-1α on sites that promoted its stability. Consistent with this, MKP-1–deficient mice expressed higher levels of PGC-1α in skeletal muscle than did wild-type mice and were refractory to the loss of oxidative myofibers when fed a high-fat diet. Collectively, these data demonstrate an essential role for MKP-1 as a regulator of the myofiber composition of skeletal muscle and suggest a potential role for MKP-1 in metabolic syndrome.

Authors

Rachel J. Roth, Annie M. Le, Lei Zhang, Mario Kahn, Varman T. Samuel, Gerald I. Shulman, Anton M. Bennett

×

Figure 1

Resistance to diet-induced obesity and increased energy expenditure in mkp-1–/– mice.

Options: View larger image (or click on image) Download as PowerPoint
Resistance to diet-induced obesity and increased energy expenditure in m...
(A) 129/J mkp-1+/– mice were backcrossed to wild-type C57BL6/J mice for 8 generations. At weaning, backcrossed mkp-1+/+ and mkp-1–/– mice were placed on a HFD, and weights were monitored weekly for 16 weeks. Data are mean ± SEM (n = 8–16 per time point). (B) mkp-1+/+ and mkp-1–/– mice were subjected to proton magnetic resonance spectroscopy analysis after 16 weeks of HFD feeding (n = 6–8). Data are mean ± SEM. (C–F) mkp-1+/+ and mkp-1–/– mice were subjected to open circuit calorimetry after 16 weeks of HFD feeding, and (C) oxygen consumption, (D) energy expenditure, (E) food consumption, and (F) locomotor activity were recorded. Data in C–F are mean ± SEM (n = 6–8). *P < 0.05, **P < 0.005, #P < 0.0005 versus mkp-1+/+.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Blogged by 1
52 readers on Mendeley
See more details