Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Impaired endocytosis of the ion channel TRPM4 is associated with human progressive familial heart block type I
Martin Kruse, … , Paul Brink, Olaf Pongs
Martin Kruse, … , Paul Brink, Olaf Pongs
Published August 24, 2009
Citation Information: J Clin Invest. 2009;119(9):2737-2744. https://doi.org/10.1172/JCI38292.
View: Text | PDF
Research Article

Impaired endocytosis of the ion channel TRPM4 is associated with human progressive familial heart block type I

  • Text
  • PDF
Abstract

Progressive familial heart block type I (PFHBI) is a progressive cardiac bundle branch disease in the His-Purkinje system that exhibits autosomal-dominant inheritance. In 3 branches of a large South African Afrikaner pedigree with an autosomal-dominant form of PFHBI, we identified the mutation c.19G→A in the transient receptor potential cation channel, subfamily M, member 4 gene (TRPM4) at chromosomal locus 19q13.3. This mutation predicted the amino acid substitution p.E7K in the TRPM4 amino terminus. TRPM4 encodes a Ca2+-activated nonselective cation (CAN) channel that belongs to the transient receptor potential melastatin ion channel family. Quantitative analysis of TRPM4 mRNA content in human cardiac tissue showed the highest expression level in Purkinje fibers. Cellular expression studies showed that the c.19G→A missense mutation attenuated deSUMOylation of the TRPM4 channel. The resulting constitutive SUMOylation of the mutant TRPM4 channel impaired endocytosis and led to elevated TRPM4 channel density at the cell surface. Our data therefore revealed a gain-of-function mechanism underlying this type of familial heart block.

Authors

Martin Kruse, Eric Schulze-Bahr, Valerie Corfield, Alf Beckmann, Birgit Stallmeyer, Güven Kurtbay, Iris Ohmert, Ellen Schulze-Bahr, Paul Brink, Olaf Pongs

×

Figure 6

Sensitivity of TRPM4 current density to SUMOylation.

Options: View larger image (or click on image) Download as PowerPoint
Sensitivity of TRPM4 current density to SUMOylation.
(A) C-terminally FL...
(A) C-terminally FLAG-tagged TRPM4 or TRPM4E7K protein pulled down on beads coated with FLAG-specific antibodies were subjected to SDS-PAGE and Western blotting. Blots were stained with rabbit SUMO-1–specific primary antibody and anti-mouse rabbit horseradish peroxidase–coupled secondary antibody. Arrow indicates SUMOylated TRPM4. (B) Same experiment as in Figure 5A, but TRPM4 channel was coexpressed with Ubc9, SENP1, or the inactive mutant SENP1-C603S (SENP1*). n = 6–13. (C) Myc-tagged TRPM4E7K was expressed in HEK 293 cells alone or together with Ubc9 or SENP1. At 24 hours after transfection, the surface density of Myc-tagged TRPM4E7K channel was assessed by FACS analysis, as described in Methods. n = 3 per group. *P < 0.05.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts