Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Extracellular superoxide dismutase in the airways of transgenic mice reduces inflammation and attenuates lung toxicity following hyperoxia
Rodney J. Folz, … , Amir M. Abushamaa, Hagir B. Suliman
Rodney J. Folz, … , Amir M. Abushamaa, Hagir B. Suliman
Published April 1, 1999
Citation Information: J Clin Invest. 1999;103(7):1055-1066. https://doi.org/10.1172/JCI3816.
View: Text | PDF
Article Article has an altmetric score of 3

Extracellular superoxide dismutase in the airways of transgenic mice reduces inflammation and attenuates lung toxicity following hyperoxia

  • Text
  • PDF
Abstract

Extracellular superoxide dismutase (EC-SOD, or SOD3) is the major extracellular antioxidant enzyme in the lung. To study the biologic role of EC-SOD in hyperoxic-induced pulmonary disease, we created transgenic (Tg) mice that specifically target overexpression of human EC-SOD (hEC-SOD) to alveolar type II and nonciliated bronchial epithelial cells. Mice heterozygous for the hEC-SOD transgene showed threefold higher EC-SOD levels in the lung compared with wild-type (Wt) littermate controls. A significant amount of hEC-SOD was present in the epithelial lining fluid layer. Both Tg and Wt mice were exposed to normobaric hyperoxia (>99% oxygen) for 48, 72, and 84 hours. Mice overexpressing hEC-SOD in the airways attenuated the hyperoxic lung injury response, showed decreased morphologic evidence of lung damage, had reduced numbers of recruited inflammatory cells, and had a reduced lung wet/dry ratio. To evaluate whether reduced numbers of neutrophil infiltration were directly responsible for the tolerance to oxygen toxicity observed in the Tg mice, we made Wt and Tg mice neutropenic using anti-neutrophil antibodies and subsequently exposed them to 72 hours of hyperoxia. Both Wt and Tg neutrophil-depleted (ND) mice have less severe lung injury compared with non-ND animals, thus providing direct evidence that neutrophils recruited to the lung during hyperoxia play a distinct role in the resultant acute lung injury. We conclude that oxidative and inflammatory processes in the extracellular lung compartment contribute to hyperoxic-induced lung damage and that overexpression of hEC-SOD mediates a protective response to hyperoxia, at least in part, by attenuating the neutrophil inflammatory response.

Authors

Rodney J. Folz, Amir M. Abushamaa, Hagir B. Suliman

×

Figure 12

Options: View larger image (or click on image) Download as PowerPoint
Light microscopy of paraffin-embedded and hematoxylin and eosin–stained ...
Light microscopy of paraffin-embedded and hematoxylin and eosin–stained section of representative lungs from mice exposed to hyperoxia. (a) Representative lung sections from Wt mice exposed to 72 h of >99% oxygen showing hyaline membrane formation (open arrows), alveolar septal thickening, and cellular infiltration composed mainly of macrophages and PMNs (filled arrows). (b) Representative lung sections from Tg mice exposed to 72 h of >99% oxygen showing modest alveolar septal thickness and fewer numbers of alveolar macrophages (filled arrows) and PMNs. Original magnification: ×132.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 2 patents
60 readers on Mendeley
See more details